Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có AB = CD (cạnh hình thoi)
BE = DG (gt)
⇒ AB + BE = CD + DG hay AE = CG (cmt)
Xét ΔAHE và ΔCFG có:
AE = CG
∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),
AH = CF (gt)
Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG
Chứng minh tương tự ta có HG = EF
Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).
b) Nối E và G.
Xét ΔOBE và ΔODG có
BE = DG (gt),
∠OBE = ∠ODG (so le trong),
OB = OD ( tính chất đường chéo của hình thoi ABCD)
⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG
Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.
Chứng minh tương tự ta có H, O, F thẳng hàng.
Vậy O là tâm đối xứng của hình bình hành EFGH.
c) Hình bình hành EFGH là hình thoi ⇔ HE = EF
⇔ Hình thoi ABCD có 1 góc vuông
⇔ ABCD là hình vuông.
Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.
a) Ta có AB = CD (cạnh hình thoi)
BE = DG (gt)
⇒ AB + BE = CD + DG hay AE = CG (cmt)
Xét ΔAHE và ΔCFG có:
AE = CG
∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),
AH = CF (gt)
Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG
Chứng minh tương tự ta có HG = EF
Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).
b) Nối E và G.
Xét ΔOBE và ΔODG có
BE = DG (gt),
∠OBE = ∠ODG (so le trong),
OB = OD ( tính chất đường chéo của hình thoi ABCD)
⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG
Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.
Chứng minh tương tự ta có H, O, F thẳng hàng.
Vậy O là tâm đối xứng của hình bình hành EFGH.
a) Ta có AB = CD (cạnh hình thoi)
BE = DG (gt)
⇒ AB + BE = CD + DG hay AE = CG (cmt)
Xét ΔAHE và ΔCFG có:
AE = CG
∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),
AH = CF (gt)
Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG
Chứng minh tương tự ta có HG = EF
Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).
b) Nối E và G.
Xét ΔOBE và ΔODG có
BE = DG (gt),
∠OBE = ∠ODG (so le trong),
OB = OD ( tính chất đường chéo của hình thoi ABCD)
⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG
Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.
Chứng minh tương tự ta có H, O, F thẳng hàng.
Vậy O là tâm đối xứng của hình bình hành EFGH.
1A) Gọi I là giao điểm của EF và AB Vì EF là đường trung trực của MB nên BE=BF xét hai tam giác BEI và BFI thì chúng bằng nhau ( t. hợp ch-cgv) IE=IF; EF vuông góc AB =) E và F đối xứng nhau qua AB nên ta chứng minh được hai tam giác BEI và BF1 bằng nhau. 1b) gọi I là giao điểm của MB và EF
ta có EI là đường trung bình của tam giác MEB
nên tam giác MEB cân tại E => góc EMB = góc EBM
có EI là đường cao đồng thời là đường phân giác
nên góc MEI = góc BEI
ta có MN//BC//AD
hay ME//BF
nên góc MFI = góc IFB; góc EMB = góc FBM ( 2 góc slt)
mà góc MEI = góc BEI
nên góc IFB = góc BEI
=> tam giác BEF cân tại B
lại có BI là tia phân giác (góc EBI = góc FBI=góc EMI)
hay BI là đường trung tuyến
ta có EF vuông góc với MB
I là trung điểm của MB và EF
nên tứ giác MEBF là hình thoi 1c)*Vì EB // NC nên EBCN là hình thang có 2 đáy là EB và NC
để EBCN là hình thang cân thì EN = BC
gọi L là giao điểm của BD và AC.
Có: BL=LD, AL=LC => ABCD là hình bình hành.
Lại có ^A=90 => ABCD là HCN (ĐPCM)
b/ xét tam giác BCI và IED có:
BC=DE(.....)
^BCI = ^IDE=90 độ
CI = ID (.....)
=> tg BCI = tg IDE (c,g,c)
=> BI = IE (ĐPCM)
Tự vẽ hình
a) Ta có: AB = CD (cạnh hình thoi)
BE = DG (g.t)
=> AB + BE = CD + DG hay AE = CG (cmt)
Xét tam giác AHE và tam giác CFG ta có:
AE=CG
HAE = FCG (cùng bù vs BAD = DCB)
AH=CF (gt)
Do đó tam giác AHE = tam giác CFG (c.g.c) => HE = FG
Do đó EFGH là cạnh bình hành (đpcm)
b) Nối E vs G
Xét tam giác OBE và tam giác ODG ta có:
BE= DG (gt)
OBE = ODG (so le trong)
OB = OD ( tính chất đường chéo của hình thoi ABCD)
=> tam giác OBE = tam giác ODG (c.g.c) => OBE = ODG
Mà DOG + GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.
Chứng minh tương tự ta có H, O, F thẳng hàng.
Vậy O là tâm đối xứng của hình bình hành EFGH.
c) Hình bình hành EFGH là hình thoi ⇔ HE = EF
\(\Leftrightarrow\Delta HAE=\Delta EBF\left(c.c.c\right)\)
\(\Leftrightarrow\widehat{HAE}=\widehat{EBF}=\widehat{EDA}\left(đv\right)\)
\(\Leftrightarrow\widehat{HAE}=\widehat{EAD}\) mà \(\widehat{HAE}+\widehat{EAD=180^O\left(kb\right)}\)
\(\Leftrightarrow\widehat{HAE}=\widehat{EAD}=90^O\)
⇔ Hình thoi ABCD có 1 góc vuông
⇔ ABCD là hình vuông.
Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.
a) Ta có AB = CD (cạnh hình thoi)
BE = DG (gt)
⇒ AB + BE = CD + DG hay AE = CG (cmt)
Xét ΔAHE và ΔCFG có:
AE = CG
∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),
AH = CF (gt)
Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG
Chứng minh tương tự ta có HG = EF
Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).
b) Nối E và G.
Xét ΔOBE và ΔODG có
BE = DG (gt),
∠OBE = ∠ODG (so le trong),
OB = OD ( tính chất đường chéo của hình thoi ABCD)
⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG
Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.
Chứng minh tương tự ta có H, O, F thẳng hàng.
Vậy O là tâm đối xứng của hình bình hành EFGH.
c) Hình bình hành EFGH là hình thoi ⇔ HE = EF
⇔ Hình thoi ABCD có 1 góc vuông
⇔ ABCD là hình vuông.
Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.