K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

b) O là giao điểm hai đường chéo hình thoi MNPQ nên O là trung điểm NQ.

Lại có NEQF là hình chữ nhật (cmt) nên đường chéo EF phải qua trung điểm O của NQ. Vậy MP, NQ, EF đồng quy tại O.

23 tháng 10 2021

a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có 

MQ=PN

\(\widehat{MQH}=\widehat{PNK}\)

Do đó: ΔMHQ=ΔPKN

Suy ra: MH=PK

21 tháng 4 2019

please help me

29 tháng 11 2019

A B C D E F P Q O

Quá nhiều cách để chứng minh. 

a. CE //BD 

    BE // DC ( vì DC // AB )

=> DCEB là hình bình hành 

=> CE = BD 

Mà BD =AC ( vì ABCD là hv)

=> CE = AC (1)

BD vuông AC ( vì ABCD là hình vuông )

mà CE // BD 

=> CE vuông AC (2)

Từ (1); (2) => Tam giác ACE là tam giác vuông cân.

b) F đối xứng với AB qua O

=> AB là đường trung trực của OF

=> BF =  BO và AO = AF 

Mà OA = OB ( ABCD là hình bình hành  vs O là giao 2 đường chéo )

=> BF = BO = AO = AF.

=> AOBF là  hình thoi

Mặt khác ^AOB = 90^o

=> AOBF là hình vuông

c.  APCQ là hình thoi 

=>đường thẳng PQ là đường trung trực của đoạn AC  (3)

Mặt khác ABCD là hình vuông => đường thẳng BD là đường trung trực của đoạn AC(4)

Từ (3); (4) => Đường thẳng PQ trùng đường thẳng BD => P; D; B; Q thẳng hàng.