Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3)kẻ BD vuông góc voi71 BC, D thuộc AC
tam giác ABC cân tại A có AH là Đường cao
suy ra AH là trung tuyến
Suy ra BH=HC
(BD vuông góc BC
AH vuông góc BC
suy ra BD song song AH
suy ra BD/AH = BC/CH = 2
suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2
tam giác BDC vuông tại B có BK là đường cao
suy ra 1/BK^2 =1/BD^2 +1/BC^2
suy ra 1/BK^2 =1/4AH^2 +1/BC^2
1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).
HB/HC=1/2
nên HC=2BH
\(\left(\dfrac{AB}{AH}\right)^2=\left(\dfrac{BH\cdot BC}{\sqrt{HB\cdot HC}}\right)^2\)
\(=\dfrac{\left(BH\cdot BC\right)^2}{HB\cdot HC}=\dfrac{\left(BH\cdot3BH\right)^2}{HB\cdot2BH}=\dfrac{9BH^2}{2BH^2}=\dfrac{9}{2}\)
Ta có: BC = \(\dfrac{BC^2}{BC}\)
Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A:
Ta được: BC\(^2\)=AB\(^2\)+AC\(^2\) (1)
mà BH + HC = BC (2)
Từ (1) và (2), ta có: \(\dfrac{BC^2}{BC}\)=\(\dfrac{AB^2+AC^2}{BH+HC}\) ⇒\(\dfrac{AB^2}{BH}=\dfrac{AC^2}{HC}\)
⇒\(\dfrac{AB^2}{AC^2}\)=\(\dfrac{BH}{HC}\) (đpcm)