Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (vectơ AB + vectơ AD) + vectơ AC
= vectơ AC + vectơ AC
= 2 vectơAC
=> | vectơ AB + vectơ AC + vectơ AD| = 2 vectơAC = 2a căn 2
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC=5\)
\(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}+\overrightarrow{AD}\right|=\left|2\overrightarrow{AD}\right|=2AD=8\)
Kẻ hbh ABFC
Dễ tính được ACD=530
nên ACB=37=CBF
Theo định lý cos ta tính được AF
bạn tự tính nhá mk ko có mt
a/ \(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\right|=\left|\overrightarrow{0}+\overrightarrow{0}\right|=0\)
b/ \(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|+\left|\overrightarrow{OC}+\overrightarrow{OD}\right|=a+a=2a\)
c/
\(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=\left|\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=2\left|\overrightarrow{OB}\right|=2\sqrt{a^2-\frac{a^2}{4}}=a\sqrt{3}\)
\(\widehat{D}=120^0\Rightarrow\widehat{A}=60^0\Rightarrow\Delta ABD\) đều
\(\Rightarrow AC=a\sqrt{3}\) (gấp đôi đường trung tuyến của tam giác đều)
\(\left|AB+AD\right|+AD.BD=\left|AC\right|+DA.DB\)
\(=\left|AC\right|+\left|DA\right|.\left|DB\right|.cos\widehat{ADB}=a\sqrt{3}+a^2.cos60^0=\frac{a^2}{2}+a\sqrt{3}\)