Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)
Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau
\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)
Áp dụng định lý Ta-lét:
\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)
\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)
Maf \(CI=DK\)(cmt)
\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD
b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:
\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)
\(\Rightarrow AB^2=EF.CD\)( đpcm )

Bạn tự vẽ hình nhé
Xét \(\Delta ACD\) có OE // CD(gt)
=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét \(\Delta BCD\) có OF // CD (gt)
=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)
Mặt khác AB // CD nên \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF

Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

Bài 1:
Áp dụng định lý Talet cho $EO\parallel DC$:
$\frac{OE}{DC}=\frac{AO}{AC}(1)$
Áp dụng định lý Talet cho $OF\parallel DC$:
$\frac{OF}{DC}=\frac{OB}{BD}(2)$
Áp dụng định lý Talet cho $AB\parallel CD$:
$\frac{OA}{OC}=\frac{OB}{OD}\Leftrightarrow \frac{OA}{OA+OC}=\frac{OB}{OB+OD}\Leftrightarrow \frac{OA}{AC}=\frac{OB}{BD}(3)$
Từ $(1);(2);(3)\Rightarrow \frac{OE}{DC}=\frac{OF}{DC}$
$\Rightarrow OE=OF$ (đpcm)

Tam giác ABD có OE//AB
=>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1)
Tam giác ABC có OF//AB
=>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2)
Tam giác ABO có CD//AB
=>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét)
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3)
Từ (1) (2) và (3)
=> OE/AB = OF/AB
=> OE = OF (đpcm.)