Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, tứ giác HMKA là hình chữ nhật vì có 3 góc vuông
b, Trong tam giác ABC: BM=CM(gt), MH song song với AC (cùng vuông góc với AB)
suy ra H là TĐ của AB
Tương tự K là TĐ của AC nên HK là đường TB của tam giác ABC
nên HK song song với BC hay BCKH là hình thang
Để BCKH Là hình thang cân thì B=C hay tam giác ABC vuông cân tại A
c,Ta có MH là đường trung bình của tam giác ABC nên MH song song với AC và MH =1/2AC
Mà MN =2 MH nên MN=AC
Tứ giác NMCA có MN song song và bằng AC nên là hình bình hành
1.phân tình thành nhân tử chung
a)x2 - xy + 9x - 9y
b)x2 + 12x + 36
c)10x(x - y) - 8y (y - x)
2.rút gọn biểu thức
a)( x + y )2 +( x - y)2
b)(6x +1)2 + (6x - 1)2 -2 (1+ 6x) (6x - 1)
3 tìm x
x2 -12x + 36=0
5x (x+2) - 3x -6=0
4. tìm giá trị nhỏ nhất
x2 + y2 - 2x + 6y +2017
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H M N K I O D
a/
Ta có
HI=CI (gt); AI=KI (gt) => ACKH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AC//HK (Trong hbh 2 cạnh đối // với nhau)
b/
Ta có
\(HM\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HM//AC
Mà HK//AC (cmt)
\(\Rightarrow HM\equiv HK\) (Từ 1 điểm ở ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho) => M; K; H thẳng hàng
=> AC//MK => MNCK là hình thang
Ta có
AC//MK => AN//MH
\(AB\perp AC\left(gt\right);HN\perp AC\left(gt\right)\) => AB//HN => AM//HN
=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
\(\widehat{A}=90^o\)
=> AMHN là hình chữ nhật => AH=MN (trong HCN hai đường chéo bằng nhau)
Mà ACKH là hbh (cmt) => AH=CK (cạnh đối hbh)
=> MN=CK
=> hình thang MNCK có MN = CK => MNCK là hình thang cân
c/
Xét tg AHC có
OA=OH (Trong hình chữ nhật 2 đường chéo cắt nhau tại trung điểm mỗi đường)
HI=CI (gt)
=> D là trọng tâm của tg AHC \(\Rightarrow AD=\dfrac{2}{3}AI\)
Xét hình bình hành ACKH có
\(AI=KI\) (Trong hình bh 2 đường chéo cắt nhau tại trung điểm mỗi đường) \(\Rightarrow AI=\dfrac{1}{2}AK\)
\(\Rightarrow AD=\dfrac{2}{3}.\dfrac{1}{2}AK=\dfrac{1}{3}AK\Rightarrow AK=3AD\)