\(\left(\widehat{A}=\widehat{D}=90^0\right)\)có đáy nhỏ AB=5cm,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

Kẻ \(BH\perp CD\)

Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)

Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)

\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)

\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)

Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)

Chu vi hình thang vuông ABCD là: 

          \(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)

Chúc bạn học tốt.

11 tháng 7 2018

ai h minh minh h lai cho

11 tháng 7 2018

là sao ạ

30 tháng 9 2018

ấn vào câu hỏi tương tự ấy 

https://olm.vn/hoi-dap/question/1004845.html

22 tháng 6 2019

Em tham khảo link dưới:

Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath

19 tháng 6 2016

1/

  A B C D H K 1 2,7

Kẻ AH \(\perp\)CD , \(BK\perp CD\)

Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK

   => tam giác AHD = tam giác BKC (gcg) 

   => DH = KC 

Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)

Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)

    => x = 1/2 hay DH = KC = 1/2 

Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)

Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)

    Vậy AB = 1,7m

2/ 

I D C A B 1 2

a/ Cm: tam giác ICD đều:

 Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D 

 => ID = DC (1)

 => DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)

 Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị) 

       mà góc IDC = góc ICD

    => góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm

    => ID = IA + AD = 4 + 4 = 8cm (3) 

 Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều

b/ Tính chu vi hình thang ABCD:

 Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm

 ID = DC = 8cm

 Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)

10 tháng 7 2017

A B C D

a)

Ta có:

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Leftrightarrow\frac{C+D}{2}+C+D=360^o\)

\(\Leftrightarrow\frac{3\left(C+D\right)}{2}=360^o\)

\(\Leftrightarrow3\left(C+D\right)=720^o\)

\(\Leftrightarrow C+D=240^o\)

\(\Leftrightarrow A+B=120\)