\(\widehat{A}=\widehat{D}=90^o\))có AB = ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

a) MN là đường trung bình của tam giác HDC nên MN = \(\frac{1}{2}CD\)và \(MN//CD\)

Mà \(AB//CD\)và AB =\(\frac{1}{2}CD\)nên \(AB//MN\)và AB = MN

Suy ra ABMN là hình bình hành

b) Vì \(MN//CD\)và \(AD\perp CD\)nên \(AD\perp MN\)

Suy ra N là trực tâm của tam giác AMD

d) CD = 16 nên AB = 8

Suy ra \(S_{ABCD}=\frac{\left(16+8\right).6}{2}=72\left(cm^2\right)\)

7 tháng 10 2019

c) \(\widehat{NAB}=\widehat{NMB}\)(hai góc đối)

\(\Rightarrow NBM+NDM=NAB+DAC=90^0=BMD\)

3 tháng 10 2018

A B H D C 1 2

a,kẻ \(AH\bot DC(H\in BC)\)

cm được ABHD là hình chữ nhật suy ra AB=HD=2cm

Mà DH+HC=DC

\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\) 

\(\Rightarrow \Delta DBC\) cân tại B

\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)

\(\Rightarrow\Delta DBC \) vuông cân tại B

b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)

\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D

c,Ta tính được BH=DH=CH=2cm 

\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)

6 tháng 7 2016

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [D, C] ?o?n th?ng i: ?o?n th?ng [A, D] ?o?n th?ng j: ?o?n th?ng [B, C] ?o?n th?ng k: ?o?n th?ng [A, C] ?o?n th?ng l: ?o?n th?ng [N, M] ?o?n th?ng m: ?o?n th?ng [N, C] ?o?n th?ng n: ?o?n th?ng [D, M] ?o?n th?ng p: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [N, B] A = (-0.8, 5.28) A = (-0.8, 5.28) A = (-0.8, 5.28) B = (2.92, 5.32) B = (2.92, 5.32) B = (2.92, 5.32) D = (-4.48, -0.26) D = (-4.48, -0.26) D = (-4.48, -0.26) C = (-0.76, -0.22) C = (-0.76, -0.22) C = (-0.76, -0.22) ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q

Cô hướng dẫn thôi nhé :)

a. AMCN là hình thoi vì có AN//CM; AN = CM và \(AC\perp MN\) 

b. Ta có góc DCB = 120 nên DNMC là hình thoi hay NM = MC = MB. Vậy tam giác NCB vuông tại N.

c. QNPM là hình chữ nhật : NP//QM, NQ//PM, NQ vuông góc PM.

Thấy ngay \(\frac{S_{NQM}}{S_{NMCD}}=\frac{S_{NMP}}{S_{ABMN}}=\frac{1}{4}\Rightarrow\frac{S_{NPMQ}}{S_{ABCD}}=\frac{1}{4}\)

d. Ta tính được DC , từ đó suy ra \(NC=DC\)

\(NB=2DQ=2\sqrt{DC^2-QC^2}\)

27 tháng 10 2017

98 là đúng

27 tháng 10 2017

Có DAB + ABC = 180
Có DAC + CAB = 90 và CBF + FBA = 90
Từ 2 điều trên suy ra FBA + FAB = 90
Xét tam giác ABF có FBA + FAB = 90 (cm trên)
và  FBA + FAB + AFB = 180 (3 góc tam giác)
Từ đó suy ra được AFB = 90. 

Từ đó biết được đpcm

30 tháng 9 2018

a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)

\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)

\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)

b,  \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)

Do đó: BI là tia p/g của \(\widehat{ABC}\)

Mà      CI là tia phân giác của \(\widehat{BCD}\)

          \(\widehat{ABC}+\widehat{BCD}=180^0\)

\(\Rightarrow\widehat{BIC}=90^0\)

c,  \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)

     \(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\)  (2)

Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)