K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{C}=45^0\)

\(\widehat{B}=135^0\)

 

21 tháng 6 2016

DUNG 0

9 tháng 9 2016

1.a) xét tam giác DBC có : 
góc B = 90 độ ( BD vuông góc BC) 
BD=BC 
=> tam giác DBC là tam giác vuông cân => góc C =góc BDC= 45 độ 
xét hình thang ABCD có : 
góc ABC = 360 độ - ( 90 dộ+90 độ+45 độ) = 135 độ 
b) ta có : 
góc ABD = góc ABC - góc DBC = .135 độ - 90 độ = 45 độ 
BD = cos ABD . AB = cos 45 độ . 3 = ......cm 
mà BD=BC=> BC =.....cm 
xét tam giác vuông cân DBC có 
CD^2= BC^2 + BD^2 (định lí pi-ta-go) 
<=>................. 
<=>................. 

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:

a. $BD\perp BC, BD=BC$ nên tam giác $BDC$ vuông cân tại $B$

$\Rightarrow \widehat{C}=45^0$

$\widehat{ABC}=180^0-\widehat{C}=180^0-45^0=135^0$

b.

Ta có: $\widehat{ABD}=\widehat{ABC}-\widehat{DBC}=135^0-90^0=45^0$ nên tam giác $ABD$ vuông cân tại $A$

$\Rightarrow AD=AB=3$ 

Áp dụng định lý Pitago:

$BD=\sqrt{AB^2+AD^2}=\sqr{3^2+3^2}=3\sqrt{2}$ (cm)

$BC=BD=3\sqrt{2}$ (cm)

Tam giác $BDC$ vuông cân tại $B$ nên áp dụng định lý Pitago:

$DC=\sqrt{BC^2+BD^2}=\sqrt{(3\sqrt{2})^2+(3\sqrt{2})^2}=6$ (cm)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Hình vẽ: