Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng các hệ thức lượng trong tam giác vuông ABD, tính được BD = 25cm, OB = 9cm, OD = 16cm
b, Áp dụng các hệ thức lượng trong tam giác vuông DAC tính được OA = 12cm, AC = 100 3 cm
c, Tính được S = 1250 3 c m 2
a/ Ta có hình thang ABCD với A=D=90 độ và AC vuông BD. Vì AD=3 căn 13cm và OD=9cm, ta có:
OD^2 + AD^2 = OA^2
9^2 + (3 căn 13)^2 = OA^2
81 + 9*13 = OA^2
81 + 117 = OA^2
198 = OA^2
OA = căn 198 cm
Vì AC vuông BD, ta có:
AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81
Vì AC vuông BD, ta có:
AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81
b/ Qua O vẽ đường thẳng song song với đáy cắt AD và BC tại M và N. Ta có:
MN = AD - BC
MN = 3 căn 13 - BC
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)