K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng1/ Trong các hình sau, hình không có tâm đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi2/ Trong các hình sau, hình không có trục đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ...
Đọc tiếp

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I

 

I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng

1/ Trong các hình sau, hình không có tâm đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

2/ Trong các hình sau, hình không có trục đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ dài đường trung bình của hình thang đó là:

A . 10cm B . 5cm C . √10 cm D . √5cm

4/ Tứ giác có hai cạnh đối song song và hai đường chéo bằng nhau là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình chữ nhật

5/ Một hình thang có một cặp góc đối là: 1250 và 650. Cặp góc đối còn lại của hình thang đó là:

A . 1050 ; 450 B . 1050 ; 650

C . 1150 ; 550 D . 1150 ; 650

6/ Cho tứ giác ABCD, có ∠A = 800; ∠B =1200, ∠D = 500. Số đo góc C là?

A. 1000 , B. 1500, C. 1100, D. 1150

7/ Góc kề 1 cạnh bên hình thang có số đo 750, góc kề còn lại của cạnh bên đó là:

A. 850 B. 950 C. 1050 D. 1150

8/ Độ dài hai đường chéo hình thoi là 16 cm và 12 cm. Độ dài cạnh của hình thoi đó là:

A 7cm, B. 8cm, C. 9cm, D. 10 cm

II/TỰ LUẬN (8đ)

Bài 1: ( 2,5 đ) Cho tam giác ABC cân tại A, M là trung điểm của BC, Từ M kẻ các đường ME song song với AC ( E ∈ AB ); MF song song với AB ( F ∈ AC ). Chứng minh Tứ giác BCEF là hình thang cân.

Bài 2. ( 5,5đ)Cho tam giác ABC góc A bằng 90o. Gọi E, G, F là trung điểm của AB, BC, AC. Từ E kẻ đường song song với BF, đường thẳng này cắt GF tại I.

a) Tứ giác AEGF là hình gì ?

b) Chứng minh tứ giac BEIF là hình bình hành

c) Chứng minh tứ giác AGCI là hình thoi

d) Tìm điều kiện để tứ giác AGCI là hình vuông.

1

Bài 1: 

Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

MF//AB

DO đó: F là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC
Do đó: EF là đường trung bình

=>EF//BC

hay BEFC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BEFC là hình thang cân

21 tháng 11 2019

1-D

2-D

3-A

4-C

5-D

6-C

29 tháng 6 2017

Hình bình hành

31 tháng 7 2020

A B C D H

Vì AB // CD nên \(\widehat{B}+\widehat{C}=180^o\)

Mà \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o}{2}=90^o\)

\(\Rightarrow\)Tứ giác ABCH có 3 góc vuông là hình chữ nhật

Ta có : \(DH=DC-HC\)

                    \(=DC-AB\)  (Vì AB = HC)

                     \(=4-3\)

                      \(=1\left(cm\right)\)

Lại có : \(\hept{\begin{cases}\widehat{A}=3\widehat{D}\\\widehat{A}+\widehat{D}=180^o\left(slt\right)\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{A}=135^o\\\widehat{D}=45^o\end{cases}}\)

\(\Rightarrow\)△AHD vuông tại H có ^ADH = 45o

\(\Rightarrow\)△AHD vuông cân tại H

\(\Rightarrow\)AH = DH

\(\Rightarrow\)AH = 1 (cm)

Vậy \(S_{ABCD}=\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(4+3\right)\cdot1}{2}=3,5\left(cm^2\right)\)

31 tháng 7 2020

Xét hình thang ABCD có \(AB//CD\)(gt) có:

\(\widehat{A}+\widehat{D}=180^0\)(trong cùng phía)

Mà \(\widehat{A}=3\widehat{D}\left(gt\right)\)

\(\Rightarrow3\widehat{D}+\widehat{D}=180^0\)

\(\Leftrightarrow4\widehat{D}=180^0\)

\(\Leftrightarrow\widehat{D}=45^0\)

\(\Rightarrow\widehat{A}=3.45^0=135^0\)

Ta có:\(AB//CD\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)

Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{B}=180^0\)

                                 \(\Leftrightarrow2\widehat{B}=180^0\)

                                 \(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=90^0\)

Xét tứ giác ABCH có \(\widehat{B}=\widehat{C}=\widehat{H}=90^0\left(cmt\right)\)

\(\Rightarrow\)Tứ giác ABCH là hình chữ nhật (DHNB)

\(\Rightarrow AB=CH=3cm\)(t/c)  \(\Rightarrow DH=CD-CH=4-3=1\left(cm\right)\)

Xét \(\Delta AHD\)có \(\widehat{H}=90^0,\widehat{D}=45^0\left(cmt\right)\)

\(\Rightarrow\Delta AHD\)vuông cân tại A (DHNB) \(\Rightarrow AH=DH=1cm\)(t/c)

Diện tích hình thang ABCD có:

\(S_{ABCD}=\frac{\left(AB+CD\right)\times AH}{2}=\frac{\left(3+4\right)\times1}{2}=3,5\left(cm^2\right)\)

Đáp số \(3,5cm^2\)

Học tốt 

Câu 1:  a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm Câu 3: a) Cho D ABC ∽ D MNI. BiếtAˆA^= 800;NˆN^= 300. TínhCˆC^  b)...
Đọc tiếp

Câu 1:  

a) Tính diện tích hình thoi có độ dài hai đường chéo là 5cm và 7cm. 

b) Tính diện tích hình thang có độ dài hai đáy là 4cm và 6cm, đường cao 3cm 

c) Tính diện tích hình bình hành có độ dài đáy là 8cm và đường cao ứng với cạnh đáy đó là 7cm 

Câu 2: Viết tỉ số của cặp đoạn thẳng có độ dài như sau:AB = 7cm  và  CD = 14cm 

Câu 3: a) Cho D ABC ∽ D MNI. Biết

AˆA^

= 800;

NˆN^

= 300. Tính

CˆC^

 

 

b) Cho DABD DBDC, viết các cặp góc tương ứng bằng nhau của hai tam giác đã cho.   

Câu 4: Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Lấy N thuộc AC sao cho AN = 3cm. Chứng minh MN // BC. 

Câu 5: Cho tam giác ABC vuông tại A có AB = 12cm, AC = 15cm. Vẽ AM là tia phân giác của góc A (M thuộc BC). Biết BM = 8cm. Tính NC? 

Câu 6 : Cho có AB = 3cm, AC = 4,5cm, BC = 6cm. có DE= 12cm, EF=9cm, DF = 6cm. Chứng minh  . 

Câu 7: a) Cho tam giác ABC có AB = 4cm, BC = 6cm. Lấy M thuộc AB sao cho AM = 2cm. Biết MN // BC. Tính MN?  

b) Cho tam giác ABC có AB = 15cm, AC = 18cm. Trên AB lấy điểm M sao cho AM = 12cm, qua điểm M kẻ đoạn thẳng MN//BC. Tính độ dài đoạn thẳng AN? 

Câu 8:Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy điểm M sao cho AM = 4cm. Kẻ MN song song với BC (NAC). Tính AN? 

Câu 9 : H.thang ABCD(AB//CD) có AB = 6cm, CD = 24cm, BD = 12cm. Chứng minh: DABDDBDC. 

Câu 10 : Cho nhọn. Trên cạnh Ox, đặt các đoạn thẳng OA = 6cm, OB = 18cm. Trên cạnh Oy, đặt các đoạn thẳng OC = 9cm, OD = 12cm.Chứng minh hai tam giác OAD và OCB  đồng dạng. 

Câu 11: Cho có và có MN = 6cm; MP = 8cm;  

NP = 12cm. Hai tam giác ABC và MNP có đồng dạng không? Vì sao?  

Câu 12: Cho góc nhọn xAy, trên tia Ax đặt hai đoạn thẳng AM = 10cm và AB = 12cm. Trên tia Ay đặt hai đoạn thẳng AN = 8cm và AC = 15cm. BN cắt CM tại H 

Chứng minh đồng dạng với   

Chứng minh    

1

Câu 11:

Xét ΔABC và ΔMNP có

\(\dfrac{AB}{MN}=\dfrac{AC}{MP}=\dfrac{BC}{NP}\left(=\dfrac{1}{2}\right)\)

Do đó: ΔABC~ΔMNP

Câu 12:

a: Xét ΔAMC và ΔANB có

\(\dfrac{AM}{AN}=\dfrac{AC}{AB}\left(\dfrac{10}{8}=\dfrac{15}{12}\right)\)

\(\widehat{MAC}\) chung

Do đó: ΔAMC đồng dạng với ΔANB

b: Ta có: ΔAMC đồng dạng với ΔANB

=>\(\widehat{ACM}=\widehat{ABN}\)

Xét ΔHMB và ΔHNC có

\(\widehat{HBM}=\widehat{HCN}\)

\(\widehat{MHB}=\widehat{NHC}\)(hai góc đối đỉnh)

Do đó; ΔHMB đồng dạng với ΔHNC

=>\(\dfrac{HB}{HC}=\dfrac{BM}{CN}\)

=>\(HB\cdot CN=BM\cdot CH\)

Câu 10:

Xét ΔOAD và ΔOCB có

\(\dfrac{OA}{OC}=\dfrac{OD}{OB}\)

góc O chung

Do đó: ΔOAD~ΔOCB

26 tháng 11 2016

5cm

26 tháng 11 2016

gọi chiều dài, chiều rộng và đường chéo của hình chữ nhật đó lần lượt là a,b,c . Áp dụng định lí Pitago ta có:

\(a^2+b^2=c^2\)

<=> 4^2 + 3^2 = c^2

=> c^2 = 25

=> \(c=\sqrt{25}=5\)

Vậy độ dài đường chéo của hình chữ nhật là 5cm