Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác abc có m là tđ của ab
n là tđ của ac => mn là đtb=>mn//bc
xét tam giác dbc có q là td của bd
p là tđ của dc =>qp là đtb =>qp//bc
=>mn//qp
c/m tương tự để mq//np
=.>mnpq là hbh
\(\Delta ABD\) có MA = MB; QB = QD
\(\Rightarrow\)MQ là đường trung bình của \(\Delta ABD\)
\(\Rightarrow\)MQ // AD; MQ = 1/2 AD (1)
\(\Delta CAD\)có NA = NC; PC = PD
\(\Rightarrow\)NP là đường trung bình của \(\Delta CAD\)
\(\Rightarrow\)NP // AD; NP = 1/2 AD (2)
Từ (1) và (2) suy ra: MQ = NP; MQ // NP
\(\Rightarrow\)Tứ giác MNPQ là hình bình hành
ABCD là hình thang cân \(\Rightarrow\) AD = BC
CM: MN = PQ = 1/2 BC (do MN, PQ là đường trung bình của \(\Delta ABC\)và \(\Delta DBC\))
mà MQ = NP = 1/2 AD
\(\Rightarrow\)MQ = MN
\(\Rightarrow\)hình bình hành MNPQ là hình thoi
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
a) DEBF là hình bình hành vì EB=DF và // với nhau
b) do 2 tam giác CAB và ACD bằng nhau
có AC (chung) . 2 đường chéo AC và BD nên O là trung điểm của AC
E, F là trung đểm của AB và CD nên 3 điểm FOF thẳng hàng
ta lại có OE và OF là đường trubg bình của 2 tam giác bằng nhau như ở trên
=> OE=OF => đối xứng qua O
c) do DEvaf BF // nên EM // FN
ta lại có 2 tam giác AME= FNC vì các góc A=C; E=F (do các cặp góc so le bằng nhau)
=> EM=FN => EM // FN
vaayjEMFN là hình bình hành
a) ta có: ABCD là hình bình hành => AB // CD và AB = CD
mà E là trung điểm của AB ; F là trung điểm của CD
AE = EB = CF = DF (1)
vì AB // CD => EB // DF (2)
từ (1) và (2) => tứ giác DEBF là hình bình hành (đccm)
b) hình bình hành ABCD có:
AC cắt BD tại trung điểm của mỗi đường (1)
xét hình bình hành DEBF có EF cắt BD tại trung điểm mỗi đường (2)
từ (1) và (2) => AC ; BD ; EF đồng quy
c) gọi O là giao điểm của AC ; BD ; EF
xét \(\Delta EOM\) và \(\Delta NOF\) có:
góc EOM = góc NOF (đối đỉnh)
OE = OF
góc MEF = góc NFE (CE // BF)
=> tam giác EOM = tam giác NOF (g.c.g)
=> ME = NF
ta có: ME // NF
=> tứ giác EMFN là hbh (đccm)
chúc bạn học tốt!! ^^
564576767568768769535737476575678567856856876876697634524545346456457645765756567563
ABCD là HBH => AB = CD
tg BEFD có : BE = DF ( cùng = 1/2 hai cạnh Ab và CD )
BE // DF ( AB // CD)
=> BEFD là HBH
b, TG AEFD có AE = DF ( cùng bằng 1/2 hai cạnh bằng nhau )
AE // BF ( AB // CD)
=> EFD là HBH
Tam giác AOB ~ tam giác COD
=> [TEX]\frac{OA}{OC}[/TEX] = [TEX]\frac{OB}{OD}[/TEX] =[TEX]\frac{AB}{CD}[/TEX]
=> [TEX]\frac{OA +OB}{OC +OD}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (1)
Tương tự ta cũng có tam giác IAB ~ tam giác IDC
=> [TEX]\frac{IA +IB}{ID + IC}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (2)
Từ (1)và (2) => đpcm
Câub:
DỄ C/M tam giác MBO ~ tam giác NDO ( MB/DN = OB/OD ; Góc MBO = góc ODN)
=> góc MOB = góc DON
=> M ; O ; N thẳng hàng (3)
Dễ c/m I ; M ; N thẳng hàng ( cái này cực dễ ) (4)
=> Từ (3)và (4) => đpcm
B1: Xét hình thang ABCD có : EF là đường TB=>EF=AB+CD/2
Ta có:DE+EF+FC=AD/2+AB+CD/2+BC/2=(AD+AB+CD+BC)/2=5
=>AB+BC+CD+DA=10