K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

a/Có AB//CD nên \(\frac{AB}{CD}=\frac{MB}{DP}=\frac{MA}{PC}\).Theo hệ quả Thales thì ta có

AC, BD, MP đồng quy

Ta có M,N,Q là tđ AB,AC,BD nên \(MN=\frac{1}{2}BC,MQ=\frac{1}{2}AD\)

BC=AD nên MN=MQ(1)

Tương tự QP=NP =1/2AD=1/2BC(2)

Từ (1) và (2) suy ra MNPQ là h/thoi \(\Rightarrow\)MP là tia phấn giác QMN

b/

20 tháng 3 2020

Có : \(\widehat{DAB}=\widehat{CBA}=\widehat{AMN}=\widehat{BMQ}=130\)

\(\widehat{BMN}=\widehat{AMQ}=50\Rightarrow\widehat{QMN}=80\)

Tgiac QMN cân nên tính đc các góc còn lại

22 tháng 4 2020

 a,

góc QPN=góc QMN=80

góc PNM=góc PQM=100

Giải thích các bước giải:

 a. Gọi  E là giao của AC và BD

ABCD là hình thang cân -> AC=BD

Xét ΔDQP và  ΔCNP có

DQ=CN=(AC2AC2 = BD2BD2 )

góc QDP = góc NCP

DP=CP

-> ΔDQP =  ΔCNP (c.g.c)

-> góc DPQ=góc CPN

Xét ΔDEP và  ΔCEP có

DE=CE

cạnh EP chung

DP=CP

-> ΔDEP = ΔCEP (c.c.c)

-> góc DPE=góc CPE=90

<-> góc DPQ + góc QPE= góc CPN+góc NPE
-> góc QPE = góc NPE
-> PM là tia phân giác của góc QMN

b. Vì Q,P là trung điểm DB,DC

-> QP là đường trung bình -> QP=BC2BC2, QP//BC

CM tương tự MN=BC2BC2

PN=AD2AD2

QM=AD2AD2

Mà AD=BC

-> QP=MN=PN=QM

-> QPNM là hình thoi

Vì QP//BC -> góc DPQ=góc DCB=50

góc QPM=góc DPM-góc DPQ=90-50=40

góc QPN=2.góc QPM=2.40=80

góc PNM=180-góc QPN=100

góc QPN=góc QMN=80

góc PNM=góc PQM=100

22 tháng 4 2020

A M B Q N P D C

a.Vì M, N , P, Q là trung điểm AB, AC, DC, DB

=> MN,NP,PQ,QM là đường trung bình ΔABC,ACD,DBC,ABD

\(\Rightarrow MQ=PN=\frac{1}{2}AD,MN=PQ=\frac{1}{2}BC\)

Mà AD = BC => MN = NP = QM => MNPQ là hình thoi

=> PM là tia phân giác ^QPN

b ) Vì PN // AD => \(\widehat{NPC}=\widehat{ADC}=50^0\)

\(\Rightarrow\widehat{MPQ}=\widehat{MPN}=90^0-50^0=40^0\Rightarrow\widehat{NPQ}=80^0\)

Vì ABCD là hình thang cân , M, N là trung điểm AB ,CD

=> \(MP\perp DC,AB\)

Do MNPQ là hình thoi

\(\Rightarrow\widehat{QMN}=\widehat{QPN}=80^0\Rightarrow\widehat{MQP}=\widehat{MNP}=180^0-80^0=100^0\)

10 tháng 11 2017

A B C D M N P Q

xét tam giác ADC có Q là trung điểm của AD(gt)

P là trung điểm của DC (gt)

=> QP là đường trung bình của tam giác ADC

=> QP=AC/2, QP// AC (1)

xét tam giác ABC có M là trung điểm của AB (gt)

N là trung điểm của BC (gt)

=> NM là đường trung bình của tam giác ABC

=> NM = AC/2, NM // AC (2)

từ (1) và (2) => NM = QP, NM // QP => MNPQ là HBH(vì là tứ giác có 2 cạnh đối vừa // vừa = nhau)

b) ABCD là Hthang cân => \(\widehat{BAD}=\widehat{ABC}\), AD = BC (t/c Hthang cân)

AD = BC => AQ = BN

xét tam giác AQM và tam giác MBN

có AM=MB (gt)

\(\widehat{QAM}=\widehat{MBN}\)(cmt)

AQ = BN (cmt)

=> tam giác AQM = tam giác BNM(c-g-c)

=> QM=MN (2 cạnh tương ứng)

HBH MNPQ có QM = MN (cmt)

=> MNPQ là Hthoi (vì là HB có 2 cạnh kề = nhau)

MP là đường chéo => MP là tia phân giác của \(\widehat{QMN}\)(t/c Hthoi)

10 tháng 2 2016

a / hình bình hành 

b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD

c/hình vuông

10 tháng 2 2016

(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD  (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD                                 (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC                                                        (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN 
=> MNPQ là hình thoi

 

4 tháng 12 2017

Ta có MN song song và bằng QP (vì cùng song song với AC và bằng 1/2 của AC theo tính chất đường trung bình của tam giác)

Vậy MNPQ là hình bình hành vì có 2 canh đối song song và bằng nhau. 

mk chi lam dc y a thui

4 tháng 12 2017

mơn nhìu nha

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E