Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABEC có AB // CE; AC // BE .
Vậy nên ABEC là hình bình hành. Suy ra AB = CE.
Do MN là đường trung bình hình thang ABCD nên ta có :
\(MN=\frac{AB+DC}{2}=\frac{CE+DC}{2}=\frac{DE}{2}.\)
b) Do ABCD là hình thang cân nên ta có:
\(AD=BC;DB=AC\)
Xét tam giác ABD và tam giác BAC có:
Cạnh AB chung
AD = BC
BD = AC
\(\Rightarrow\Delta ABD=\Delta BAC\left(c-c-c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{BAC}\) hay \(\widehat{ABO}=\widehat{BAO}\)
Xét tam giác OAB có \(\widehat{ABO}=\widehat{BAO}\) nê OAB là tam giác cân tại O.
c) Do ABEC là hình bình hành nên AC = BE
Lại có AC = BD nên BD = BE
Suy ra tam giác BDE cân tại B.
Tam giác cân BDE có BH là đường cao nên đồng thời là đường trung tuyến.
Lại có theo câu a thì MN = DE/2
Giả thiết lại cho MN = BH. Vậy nên BH = DE/2
Xét tam giác BDE có trung tuyến BH bằng một nửa cạnh tướng ứng nên BDE là tam giác vuông tại B.
Vậy BDE là tam giác vuông cân tại B.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
A B C D I K M N
Hướng dẫn:
Lấy N, M lần lượt là trung điểm của AD, BC
Sử dụng tính chất đường trung bình.
Em chứng minh N, I, K, M thẳng hàng ( Chứng minh: NI, NK, NM cùng song song với DC, AB)
IK=NM-NI-MK
NM=(AB+DC)/2 , NI=AB/2, MK=AB/2
=>IK= thay vào rồi tính = kết quả trên đề bài
Từ D kẻ DA' vuông góc với AB
ABCD là hình thang cân nên AD = BC ; AB//DC
=> Khoảng cách từ điểm B đến DC bằng với khoảng cách từ điểm D đến AB
=> BE = DA'
Xét tam giác DA'A và tam giác BEC có :
BE = DA' (cmt ) ; DA'A = BEC ( = 90 độ ) ; AD = BC ( cmt )
=> Tam giác DA'A = Tam giác BEC ( ch-cgv )
=> S DA'A = S BEC
Mà S BEC + S ABED = S ABCD
S DA'A + S ABED = S A'BED
=> S ABCD = S A'BED
Dễ thấy A'BED là hình chữ nhật ( tự CM nhaa )
\(\Rightarrow S.A'BED=DE.BE\)
và \(S.ABCD=\frac{AB+DC}{2}.BE\)
\(\Rightarrow DE=\frac{AB+DC}{2}\) ( ĐPCM )