Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
b: Hình bình hành AMND có AM=AD
nên AMND là hình thoi
c: Xét tứ giác ANKQ có
D là trung điểm của NQ
D là trung điểm của AK
Do đó: ANKQ là hình bình hành
Bài làm:
a, hbh ABCD có: AB // CD và AB = CD
=> AM // DN và AM = DN
=> AMND là hbh mà AB = 2AD => 1/2AB = AD => AM = AD
=> AMND là hthoi
b, cmtt câu a ta có: MB // ND và MB = ND
=> MBND là hbh
Câu a bạn sửa lại để đi mình giải cho .
Sao lại chứng minh ABCD là hình bình hành
https://olm.vn/thanhvien/trungkienhy79
https://olm.vn/thanhvien/nhu140826
Vô trang cá nhân của e ẽ thấy tình yêu TRONG SÁNG của 2 anh chị trên
A B C D M N 1 2
a) Ta có: \(\hept{\begin{cases}AB=\frac{1}{2}DC\left(gt\right)\\MC=\frac{1}{2}DC\left(gt\right)\end{cases}}\)
\(\Rightarrow AB=MC\)
MÀ \(AB//MC\)( vì \(AB//MC\))
\(\Rightarrow ABCM\)là hình bình hành (dhnb )
b) Tại có: \(N\)là điểm đối xứng của A qua DC (gt )
\(\Rightarrow AN\)là đường trung trực của DC
\(\Rightarrow AN\perp DC\)
Hay \(AN\perp DM\) (vì M thuộc DC )
\(\Rightarrow AMND\)là hình thoi ( dhnb )
https://olm.vn/thanhvien/trungkienhy79
https://olm.vn/thanhvien/nhu140826
Vô trang cá nhân của e ẽ thấy tình yêu TRONG SÁNG của 2 anh chị trên
https://olm.vn/thanhvien/trungkienhy79
https://olm.vn/thanhvien/nhu140826
Vô trang cá nhân của e ẽ thấy tình yêu TRONG SÁNG của 2 anh chị trên
a: Xét tứ giác ABCH có
AB//CH
góc AHC=90 độ
Do đó: ABCH là hình thang vuông
b: Sửa đề; DH=CK
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
Do đo: ΔAHD=ΔBKC
=>DH=CK
c: Xét ΔAED có
AH vừa là đường cao, vừa là trung tuyến
nên ΔAED cân tại A
=>góc AED=góc ADE=góc BCD
=>AE//BC
mà AB//CE
nên ABCE là hình bình hành
a: Xét tứ giác ABKH có
AB//HK
AB=HK
Do đó: ABKH là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên ABKH là hình chữ nhật