Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMPQ và ΔNQP có
MQ=NP
\(\widehat{MQP}=\widehat{NPQ}\)
QP chung
Do đó: ΔMPQ=ΔNQP
Suy ra: \(\widehat{IPQ}=\widehat{IQP}\)
=>ΔIQP cân tại I
=>IQ=IP
Ta có: IM+IP=MP
IN+IQ=NQ
mà MP=NQ
và IQ=IP
nên IM=IN
Ta có: \(\widehat{OMN}=\widehat{OQP}\)
\(\widehat{ONM}=\widehat{OPQ}\)
mà \(\widehat{OQP}=\widehat{OPQ}\)
nên \(\widehat{OMN}=\widehat{ONM}\)
hay ΔOMN cân tại O
=>OM=ON
=>O nằm trên đường trung trực của MN(1)
Ta có: IM=IN
nên I nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra OI là đường trung trực của MN
b: Ta có: OQ=OP
nên O nằm trên đường trung trực của PQ(3)
Ta có: IQ=IP
nên I nằm trên đường trung trực của PQ(4)
Ta có: KQ=KP
nên K nằm trên đường trung trực của PQ(5)
Từ (3), (4) và (5) suy ra Q,I,K thẳng hàng
a: Xet ΔBCD có
M,N lần lượtlà trung điểm của BC,CD
nên MN là đường trung bình
=>MN//BD và MN=BD/2
Xét ΔEBD có EP/ED=EQ/EB
nên PQ//BD và PQ/BD=EP/ED=1/2
=>MN//PQ và MN=PQ
Xét ΔDEC có DP/DE=DN/DC
nên PN//EC và PN=1/2EC
=>PN=1/2BD=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
PN=PQ
=>MNPQ là hình thoi
b: NP//AC
=>góc QPN=góc BAC
=>góc NMP=góc EAF
=>PM//AF
c: Xét ΔAIK có
AF vừa là đường cao, vừa là phân giác
nên ΔAIK cân tại A
a) Tam giác ABC có :
A B C D I P M
a, có ABCD là hình thang cân (gt)
=> ^D = ^C
=> tg MDC cân tại M
CÓ I là trđ của DC (Gt) => MI là đường trung tuyến của tg MDC
=> MI đồng thời là đường cao
=> MI _|_ DC mà DC // AB
=> MI _|_ AB
b, AB // DC => MAB = ADC và MBA = BCD (Đồng vị)
mà ADC = BCD
=> MAB = MBA
=> tg MAB cân tại M có MP _|_ AB
=> MP đồng thời là đt tuyến
=> P là trđ của AB