K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2014

Xét hình thang ABCD:

E là trung điểm AD

F là trung điểm BC

=> EF là đường trung bình ABCD

=> EF//AB//CD và EF =\(\frac{CD+AB}{2}\)=\(\frac{14}{2}\)=7(cm)

Xét tam giác ADC:

EG//CD

E là trung điểm AD

=>G là trung điểm AC

Tiếp tục xét tam giác ACD

Ta có: E là trung điểm AD

          G là trung điểm AC

=> EG là đường trung bình tam giác ACD

=> EG//CD và EG=\(\frac{1}{2}\)CD=4(cm)

 

Ở dạng bài này thì chỉ áp dụng chủ yếu đường trung bình của tam giác và đường trung bình của hình thang là sẽ ra thôi bạn.

30 tháng 11 2014

có ai tra loi gium toi voi đi mà

29 tháng 8 2020

A B C D E F

Bài làm:

Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)

Xét trong Δ vuông ADE tại D có góc A bằng 60 độ

=> \(\widehat{ADE}=30^0\)

Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)

Tương tự tính được: \(BF=1\left(cm\right)\)

=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)

Vì DC // FE và DE // FC nên theo t/c đoạn chắn

=> DC = FE = 2,5 (cm)

Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)

=> \(DE=\sqrt{3}\left(cm\right)\)

Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)

29 tháng 8 2020

         Giải

Kẻ DH vuông góc với AB

\(\sin\widehat{A}=\frac{DH}{AD}\)

\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)

\(\cos A=\frac{AH}{AD}\)

\(AH=\cos60^o.2\)

\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)

\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)

\(=\frac{7\sqrt{3}}{2}\)