K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB\(\sim\)ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)

b: Xét ΔCAD có OE//AD

nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)

Xét ΔBDC có OF//BC

nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)

=>DE=CF

 

7 tháng 8 2016

a) Xét ΔOIC và ΔABC có:

   \(\widehat{ACB}\) : góc chung

   \(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))

 => ΔOIC~ΔABC(g.g)

=>\(\frac{OI}{AB}=\frac{CI}{BC}\)

=> BC.OI=AB.CI

b) Theo định lý đảo của định lý ta-let vào ΔBDC :

=>  \(\frac{OI}{DC}=\frac{BI}{BC}\)

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2020

Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html

13 tháng 4 2020

hình tự vẽ nhé

do PK // BD =) áp dụng định lí ta-lét vào tam giác CBD được: CP/PB = CK/KD      (1)

dễ dàng chứng minh được tứ giác ABKD là hình bình hành =) KD=AB và AD=BK

tương tự tứ giác ABCI cũng là hình bình hành =) AI =BC

có góc PKC= góc BDC (PK//BD)

góc BDA=góc BKP (cùng = DBK)

góc AID=góc BCK 

dễ dàng =) góc ADI = góc BCK  

=) góc DAI = góc KBC

=) tam giác DAI = tam giác KBC (c-g-c) =) DI=KC

vì AB//DI nên áp dụng hệ quả của định lí ta-lét đc: DI/AB=DM/MB=KC/KD    (2)

từ (1) và (2) =) BM/MD = BP/PC 

áp dụng định lí ta lét đảo =) MP//DC

chưa hiểu thì hỏi nhé

13 tháng 4 2020

kohkkij