K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

A D B C M N

a) Ta có N là trung điểm AD

             M là trung điểm BC

\(\Rightarrow\)MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN//AB\)

Mà  \(AB\perp AD\)

\(\Rightarrow MN\perp AD\)(1)

Lại có N là trung điểm AD (2)

Từ (1) và (2)  \(\Rightarrow\Delta MAD\)cân tại M ( đpcm )

b)  \(\Rightarrow\widehat{MAN}=\widehat{MDN}\)

Mặt khác  \(\widehat{MAN}+\widehat{MAB}=\widehat{MDN}+\widehat{MDC}\left(=90^o\right)\)

 \(\Rightarrow\widehat{MAB}=\widehat{MDC}\left(đpcm\right)\)

30 tháng 6 2017

a/

có M là trung điểm BC

     N là trung điểm AD 

=> MN//AB//DC ( Tính chất đường trung bình)

=> MN vuông AD

Xét tam giác MAD có

MN vừa là đường trung tuyến ( N là trung điểm AD) vùa là đường trung trực ( N là trung điểm AD và MN vuông AD)

=>tam giác MAD cân tại M

b/

Ta có  tam giác MAD cân tại M => góc MAD =góc MDA (1)

ta có GÓC MAB+ GÓC MAD = 90 ĐỘ(2)

GÓC MDA +GÓC MDC =90ĐỘ (3)

(1) (2) (3) => GÓC MAB = GÓC MDC

Chúc bạn học tốt! (^ _ ^)

30 tháng 6 2017

a/

có M là trung điểm BC

     N là trung điểm AD 

=> MN//AB//DC ( Tính chất đường trung bình)

=> MN vuông AD

Xét tam giác MAD có

MN vừa là đường trung tuyến ( N là trung điểm AD) vùa là đường trung trực ( N là trung điểm AD và MN vuông AD)

=>tam giác MAD cân tại M

b/

Ta có  tam giác MAD cân tại M => góc MAD =góc MDA (1)

ta có GÓC MAB+ GÓC MAD = 90 ĐỘ(2)

GÓC MDA +GÓC MDC =90ĐỘ (3)

(1) (2) (3) => GÓC MAB = GÓC MDC

Chúc bạn học tốt! (^ _ ^)

9 tháng 9 2017

Bài làm

ADBCNM

a, Vì M là trung điểm của BC, N là trung điểm của AD .

⇒⇒ MN là đường trung bình của hình thang ABCD .

⇒MN⇒MN//ABAB//CDCD

mà theo gt Aˆ=900=>AB⊥ADA^=900=>AB⊥AD

=>MN⊥AD=>MN⊥AD

Trong tam giác MAD có :

MN là đường trung trực ( cmt )

MN là đường trung tuyến ( vì N là trung điểm của AD )

⇒ΔMAD⇒ΔMAD cân tại M .

b,Có ΔMADΔMAD cân tại M −>MADˆ=MDAˆ−>MAD^=MDA^

mà Aˆ=DˆA^=D^

=>Aˆ−MADˆ=Dˆ−MDAˆ=>A^−MAD^=D^−MDA^

=>MABˆ=MDCˆ(đpcm)=>MAB^=MDC^(đpcm).

8 tháng 7 2017

a/

có M là trung điểm BC

     N là trung điểm AD 

=> MN//AB//DC ( Tính chất đường trung bình)

=> MN vuông AD

Xét tam giác MAD có

MN vừa là đường trung tuyến ( N là trung điểm AD) vùa là đường trung trực ( N là trung điểm AD và MN vuông AD)

=>tam giác MAD cân tại M

b/

Ta có  tam giác MAD cân tại M => góc MAD =góc MDA (1)

ta có GÓC MAB+ GÓC MAD = 90 ĐỘ(2)

GÓC MDA +GÓC MDC =90ĐỘ (3)

(1) (2) (3) => GÓC MAB = GÓC MDC

18 tháng 7 2018

A B C D M N

\(a,\) Xét hình thang \(ABCD\) có M là trung đ' BC (gt)

                                                          N là trung đ' AD (gt)

=> MN là đg trung bình của hình thang ABCD

=> MN // AB => MN \(\perp\)AD

Xét \(\Delta AMD\)có: MN là trung đ' đồng thời là đcao

=> \(\Delta AMD\) cân tại A (đpcm)

b,Vì \(\Delta AMD\) cân tại A => \(\widehat{NAM}=\widehat{NDM}\)

mà \(\widehat{MAB}=90^O-\widehat{NAM}\)

      \(\widehat{MDC}=90^O-\widehat{NDM}\)

\(\widehat{\Rightarrow MAB}=\widehat{MDC}\) (đpcm)

20 tháng 8 2016

a/

có M là trung điểm BC

     N là trung điểm AD 

=> MN//AB//DC ( Tính chất đường trung bình)

=> MN vuông AD

Xét tam giác MAD có

MN vừa là đường trung tuyến ( N là trung điểm AD) vùa là đường trung trực ( N là trung điểm AD và MN vuông AD)

=>tam giác MAD cân tại M

b/

Ta có  tam giác MAD cân tại M => góc MAD =góc MDA (1)

ta có GÓC MAB+ GÓC MAD = 90 ĐỘ(2)

GÓC MDA +GÓC MDC =90ĐỘ (3)

(1) (2) (3) => GÓC MAB = GÓC MDC

Gọi H là trung điểm của AD

Xét hình thang ABCD có

H là trung điểm của AD

M là trung điểm của BC

Do đó: HM là đường trung bình của hình thang ABCD

Suy ra: HM//AB//CD
hay HM\(\perp\)AD

Xét ΔMAD có 

MH là đường trung tuyến ứng với cạnh AD

MH là đường cao ứng với cạnh AD

Do đó: ΔMAD cân tại M