Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có hình vẽ
Mình vẽ hình rồi đó , bn dựa vào đó chứng mình nha hc tôts
a, diện tích hình thang ABCD là: (15+20).142=245(cm2)(15+20).142=245(cm2)
b,BEDE=SAEBSAED=SCEBSCED=SAEB+SCEBSAED+SCED=SABCSACD=ABCD=34BEDE=SAEBSAED=SCEBSCED=SAEB+SCEBSAED+SCED=SABCSACD=ABCD=34
⇒SCEBSCED=34⇒SCEB+SCEDSCED=74⇒SDBCSCED=74⇒SCEBSCED=34⇒SCEB+SCEDSCED=74⇒SDBCSCED=74
⇒SCED=47.SDBC⇒SCED=47.SDBC
SDBC=20.142=140(cm2)SDBC=20.142=140(cm2)
⇒SCED=47.140=80(cm2)⇒SCED=47.140=80(cm2)
c,SAED=SACD−SECDSAED=SACD−SECD
SBEC=SBCD−SECDSBEC=SBCD−SECD
MÀ SACD=SBCD⇒SAED=SBEC
Hình bn tự vẽ nhá!
a, diện tích hình thang ABCD là: \(\frac{\left(15+20\right).14}{2}=245\left(cm^2\right)\)
b,\(\frac{BE}{DE}=\frac{S_{AEB}}{S_{AED}}=\frac{S_{CEB}}{S_{CED}}=\frac{S_{AEB}+S_{CEB}}{S_{AED}+S_{CED}}=\frac{S_{ABC}}{S_{ACD}}=\frac{AB}{CD}=\frac{3}{4}\)
\(\Rightarrow\frac{S_{CEB}}{S_{CED}}=\frac{3}{4}\Rightarrow\frac{S_{CEB}+S_{CED}}{S_{CED}}=\frac{7}{4}\Rightarrow\frac{S_{DBC}}{S_{CED}}=\frac{7}{4}\)
\(\Rightarrow S_{CED}=\frac{4}{7}.S_{DBC}\)
\(S_{DBC}=\frac{20.14}{2}=140\left(cm^2\right)\)
\(\Rightarrow S_{CED}=\frac{4}{7}.140=80\left(cm^2\right)\)
c,\(S_{AED}=S_{ACD}-S_{ECD}\)
\(S_{BEC}=S_{BCD}-S_{ECD}\)
MÀ \(S_{ACD}=S_{BCD}\Rightarrow S_{AED}=S_{BEC}\)
Câu 5: Cho hình thang ABCD có đáy bé AB=1/3 đáy lớn.Chiều cao bằng 12,6m và bằng hiệu độ dài hai đáy. a,Tính diện tích hình thang ABCD. b,Hai đường chéo AC và BD cắt nhau tại O.So sánh diện tích hai tam giácOBC và OAD c, Kéo dài cạnh DA và CB cắt nhau tại P.Tính tỉ số hai tam giác DBP và DPC.
A B C D E 20 15 14
+) Ta có: S(AED) = S(ADB) - S(AEB)
S(BEC) = S(ACB) - S(AEB)
mà S(ADB) = S(ACB) do chều cao hạ từ D và C xuống AB bằng nhau và chung đáy AB
=> S(AED) = S(BEC)
+) Ta có: S(ABC) = 14 x 15 : 2 = 105 cm2
S(ADC) = 14 x 20 : 2 = 140 cm2
=> S(ABC) / S(ACD) = 105 / 140 = 3/4
Tam giác ABC và ACD có chung đáy là AC nên
Chiều cao hạ từ B xuống AC / chiều cao hạ từ D xuống AC = 3/4
Mà tam giác BEC và AED có diện tích bằng nhau
=> đáy EC/ đáy AE = 3/4
+) Tam giác CED và tam giác AED có chùng chiều cao hạ từ D xuống AC
đáy EC/ AE = 3/4
=> S(CED)/ S(AED) = 3/4
=> S(CED)/ S(ACD) = 3/7 =>S (CED) = 3/7 x S(ACD) = 3/7 x 140 = 60 cm2
b) kẻ HK qua E vuông góc với 2 đáy.EK la chiều cao tg CDE.
Theo ĐL ta-let :
AB/CD=EH/EK
=>EK/HK=CD/(AB+CD) => EK=8cm
S = 80(cm2)
+ Xét tg AEB và tg BEC có chung đáy EB nên
S(AEB) / S(BEC) = đường cao hạ từ A xuốn BD / đường cao hạ từ C xuống BD = 1/2
+ Xét tg ABD và tg BCD có chung đáy BD nên
S(ABD) / S(BCD) = đường cao hạ từ A xuốn BD / đường cao hạ từ C xuống BD = 1/2 => S(BCD)=2xS(ABD)
+ S(ABC)=S(AEB)+S(BEC)=7,5+2x7,5=22,5 cm2
+ Xét tg ABC và tg ABD có chung đáy AB, đường cao hạ từ C xuống AB = đường cao hạ từ D xuống AB nên
S(ABC)=S(ABD)=22,5 cm2
=> S(BCD)=2xS(ABD)=2x22,5=45 cm2
S(ABCD)=S(ABD)+S(BCD)=22,5+45=67,5 cm2