K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của Amber Shindouya - Toán lớp 8 - Học toán với OnlineMath

17 tháng 7 2021

Vif CD = AD + BC maf KD = AD => KC = BC

Tam giacs DAK cân tại D => góc A1 = góc K1

Mà K1 = A2 (so le trong) => Góc A1 = góc A2 => AK là tia phân giác góc A.

Chứng minh tương tự, BK là phân giác góc B

a,{ˆA1=ˆA2(t/c.phân.giác)ˆA2=ˆK1(so.le.trong.do.AB//CD)

⇒ˆA1=ˆK1⇒ΔADK.cân.tại.D⇒AD=KD

b,{AD+BC=CDAD=DK⇒DK+BC=CD

Mà DK+KC=CD⇒KC=BC

⇒ΔBKC.cân.tại.C

c,ΔBKC.cân.tại.C⇒ˆK2=ˆB2Mà.ˆK2=ˆB1(so.le.trong.vì.AB//CK)

⇒ˆB2=ˆB1

⇒BK.là.phân.giác.ˆAB

undefined

27 tháng 6 2017

 Bài 1:

Vì AD // BC =>  Góc A cộng góc B bằng 180 độ. Mà góc A trừ góc B bằng 20 độ.

=> Góc A = (180 + 20) : 2 = 100 độ

Góc B = 80 độ. 

Vì AD // BC => Góc C cộng góc D bằng 180 độ .

Mà góc D bằng hai lần góc C => 3C = 180 độ

=> Góc C bằng 60 độ. Góc D bằng 120 độ.

11 tháng 9 2018

Bài 2 bạn xem hướng dẫn ở đây nhé:

Câu hỏi của Amber Shindouya - Toán lớp 8 - Học toán với OnlineMath

26 tháng 9 2021

a) Ta có: AB//CD(ABCD là hthang)

=> \(\widehat{BAK}=\widehat{AKD}\)(so le trong)

Mà \(\widehat{BAK}=\widehat{DAK}\)(AK là phân giác góc A)

=> \(\widehat{AKD}=\widehat{DAK}\)

=> Tam giác ADK cân tại D

=> AD=DK

b) Ta có: CD=AD+BC(gt)

=> CD=DK+BC

Mà CD=BK+KC

=> BC=KC

=> Tam giác BKC cân tại C

c) Ta có: Tam giác BKC cân tại C

\(\Rightarrow\widehat{KBC}=\widehat{BKC}\)

Mà \(\widehat{BKC}=\widehat{ABK}\)(2 góc so le trong do AB//CD)

\(\Rightarrow\widehat{KBC}=\widehat{ABK}\)

=> BK là phân giác góc B

13 tháng 7 2022

vẽ hình đi ạ

 

20 tháng 9 2021

hãy giúp tui

21 tháng 9 2021

\(a,\left\{{}\begin{matrix}\widehat{A_1}=\widehat{A_2}\left(t/c.phân.giác\right)\\\widehat{A_2}=\widehat{K_1}\left(so.le.trong.do.AB//CD\right)\end{matrix}\right.\Rightarrow\widehat{A_1}=\widehat{K_1}\\ \Rightarrow\Delta ADK.cân.tại.D\\ \Rightarrow AD=KD\)

\(b,\left\{{}\begin{matrix}AD+BC=CD\\AD=DK\end{matrix}\right.\Rightarrow DK+BC=CD\)

Mà \(DK+KC=CD\Rightarrow KC=BC\Rightarrow\Delta BKC.cân.tại.C\)

\(c,\Delta BKC.cân.tại.C\Rightarrow\widehat{K_2}=\widehat{B_2}\\ Mà.\widehat{K_2}=\widehat{B_1}\left(so.le.trong.vì.AB//CK\right)\\ \Rightarrow\widehat{B_2}=\widehat{B_1}\\ \Rightarrow BK.là.phân.giác.\widehat{ABC}\)

 

a: Xét ΔDAM có DA=DM

nên ΔDAM cân tại D

Suy ra: \(\widehat{DAM}=\widehat{DMA}\)

mà \(\widehat{DMA}=\widehat{MAB}\)

nên \(\widehat{DAM}=\widehat{BAM}\)

hay AM là tia phân giác của \(\widehat{BAD}\)