Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Xét tg ABC và tg ACD có đường cao hạ từ C xuống AB = đường cao hạ từ A xuống CD nên
\(\frac{S_{ABC}}{S_{ACD}}=\frac{AB}{CD}=\frac{1}{2}\Rightarrow S_{ACD}=2.S_{ABC}\)
Hai tg trên có chung cạnh đáy AC nên
\(\frac{S_{ABC}}{S_{ACD}}=\)đường cao hạ từ B xuống AC / đường cao hạ từ D xuống AC\(=\frac{1}{2}\)
+ Xét tg AIB và tg AID có chung cạnh đáy AI nên
\(\frac{S_{AIB}}{S_{AID}}=\) đường cao hạ từ B xuống AC / đường cao hạ từ D xuống AC\(=\frac{1}{2}\Rightarrow S_{AID}=2.S_{AIB}\)
+ Xét tg ACD và tg BCD có chung cạnh đáy CD và đường cao hạ từ A xuống CD = đường cao hạ từ B xuống CD
\(\Rightarrow S_{ACD}=S_{BCD}\) Hai tg này có phần diện tích chung là tg CID nên \(S_{AID}=S_{BIC}=2.S_{AIB}\)
\(S_{ABC}=S_{AIB}+S_{BIC}=3.S_{AIB}\)
\(\Rightarrow S_{ABCD}=S_{ABC}+S_{ACD}=3.S_{ABC}=3.3.S_{AIB}=9.13,6=122,4cm^2\)
Xét tam giác ABD và BCD có chiều cao bằng nhau đáy AB = 1/2 CD => S_ABD = 1/2 S_BCD
Mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh A = 1/2 chiều cao đỉnh C
Xét tam giác ABG và BCG chung đáy BG, chiều cao đỉnh A = 1/2 chiều cao đỉnh C => S_ABG = 1/2 S_BCG
Vậy diện tích tam giac BCG là : 34,5 x 2 = 69 (cm2)
Diện tích ABCD là : (34,5 + 69) + (34,5 + 69) x 2 = 310,5 (cm2)