K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hình thang ABCD cân có AB // CD

⇒ ∠ D =  ∠ C = 60 0

DB là tia phân giác của góc D

⇒  ∠ (ADB) =  ∠ (BDC)

∠ (ABD) =  ∠ (BDC) (hai góc so le trong)

Suy ra:  ∠ (ADB) =  ∠ (ABD)

⇒ ∆ ABD cân tại A ⇒ AB = AD (1)

Từ B kẻ đường thẳng song song với AD cắt CD tại E

Hình thang ABED có hai cạnh bên song song nên AB = ED, AD= BE (2)

∠ (BEC) =  ∠ (ADC) (đồng vị )

Suy ra:  ∠ (BEC) =  ∠ C = 60 0

⇒ ∆  BEC đều ⇒ EC = BC (3)

AD = BC (tính chất hình thang cân) (4)

Từ (1), (2), (3) và (4) ⇒ AB = BC = AD = ED = EC

⇒ Chu vi hình thang bằng:

AB + BC + CD + AD = AB + BC + EC + ED + AD = 5AB

⇒AB = BC = AD = 20 : 5 = 4 (cm)

CD = CE + DE = 2 AB = 2.4 = 8 (cm)

19 tháng 8 2024

 Xét tam giác BCD

^CBD=180-^BCD-^BDC=180-60-30=90 => tam giác BCD vuông tại B

=> BC=CD/2 (Trong tam giác vuông cạnh đối diện góc 30 độ =1/2 cạnh huyền) => CD=2.BC (1)

+ AB//CD => ^ABC+^BCD=^ABC+60=180 (Hai đường thẳng // bị cắt bởi 1 cát tuyến thì hai góc trong bù nhau)

=> ^ABC=180-60=120 => ^ABD=^ABC-^CBD=120-90=30

+ Xét tam giác ABD có ^ADB=^ABD=30 => t/g ABD cân tại A => AD=AB (2)

+ Do hình thang ABCD cân => AD=BC (3)

+ Chu vi hình thang = AB+BC+CD+AD (4)

Từ (1) (2) (3) (4) => CV hình thang ABCD=5.BC=20 cm

=> BC=20:5=4 cm

=> AB=BC=AD=4 cm

CD=2.BC=2.4=8 cm

19 tháng 6 2017

A B C D

+ Xét tam giác BCD

^CBD=180-^BCD-^BDC=180-60-30=90

=> tam giác BCD vuông tại B

=> BC=CD/2 (Trong tam giác vuông cạnh đối diện góc 30 độ =1/2 cạnh huyền)

=> CD=2.BC (1) + AB//CD

=> ^ABC+^BCD=^ABC+60=180 (Hai đường thẳng // bị cắt bởi 1 cát tuyến thì hai góc trong bù nhau)

=> ^ABC=180-60=120

=> ^ABD=^ABC-^CBD=120-90=30

+ Xét tam giác ABD có

^ADB=^ABD=30

=> t/g ABD cân tại A => AD=AB (2)

+ Do hình thang ABCD cân

=> AD=BC (3)

+ Chu vi hình thang = AB+BC+CD+AD (4)

Từ (1) (2) (3) (4) => CV hình thang ABCD=5.BC=20 cm

=> BC=20:5=4 cm

=> AB=BC=AD=4 cm

CD=2.BC=2.4=8 cm 

^ như này là góc nhé

24 tháng 8 2017

Bạn nào trả lời đc mình k nhé cảm ơn mọi người trcs ạ

24 tháng 8 2017

+ Xét tam giác BCD

^CBD=180-^BCD-^BDC=180-60-30=90

=> tam giác BCD vuông tại B => BC=CD/2 (Trong tam giác vuông cạnh đối diện góc 30 độ =1/2 cạnh huyền) => CD=2.BC (1)

+ AB//CD => ^ABC+^BCD=^ABC+60=180 (Hai đường thẳng // bị cắt bởi 1 cát tuyến thì hai góc trong bù nhau)

=> ^ABC=180-60=120 => ^ABD=^ABC-^CBD=120-90=30

+ Xét tam giác ABD có ^ADB=^ABD=30 => t/g ABD cân tại A => AD=AB (2)

+ Do hình thang ABCD cân => AD=BC (3)

+ Chu vi hình thang = AB+BC+CD+AD (4)

Từ (1) (2) (3) (4) => CV hình thang ABCD=5.BC=20 cm

=> BC=20:5=4 cm

=> AB=BC=AD=4 cm

CD=2.BC=2.4=8 cm

60*

29 tháng 6 2017

Hình thang cân

21 tháng 7 2023

a) Gọi \(\widehat{ADB}=\widehat{D_1;}\widehat{CDB}=\widehat{D_2}\)

Xét Δ vuông BDC ta có :

\(\)\(\widehat{D_2}+\widehat{C}=90^o\)

mà \(\widehat{D_2}=\dfrac{\widehat{D}}{2}\) (DB là phân giác \(\widehat{ADC}\))

     \(\widehat{C}=\widehat{D}\) (ABCD là hình thang cân)

\(\Rightarrow\dfrac{\widehat{D}}{2}+\widehat{D}=90^o\)

\(\Rightarrow\dfrac{\widehat{3D}}{2}=90^o\Rightarrow\widehat{D}=60^o\Rightarrow\widehat{C}=\widehat{D}=60^o\)

Ta lại có : \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

mà \(\left\{{}\begin{matrix}\widehat{A}=\widehat{B}\\\widehat{C}=\widehat{D}\end{matrix}\right.\) (ABCD là hình thang cân)

\(\Rightarrow2\widehat{A}+2\widehat{C}=360^o\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2\widehat{C}}{2}\)

\(\Rightarrow\widehat{A}=\widehat{B}=\dfrac{360^o-2.60^o}{2}=120^o\)

b) \(BC=AD=6\left(cm\right)\) (ABCD là hình thang cân)

Xét Δ vuông BDC ta có :

\(Cos60^o=\dfrac{BC}{DC}=\dfrac{1}{2}\)

\(\Rightarrow DC=2BC=2.6=12\left(cm\right)\)

\(DC^2=BD^2+BC^2\left(Pitago\right)\)

\(\Rightarrow BD^2=DC^2-BC^2=12^2-6^2=144-36=108=3.36\)

\(\Rightarrow BD=6\sqrt[]{3}\left(cm\right)\)

Kẻ đường cao AH và BE vuông góc DC tại H và E

Ta có : \(BE.CD=BD.BC\Rightarrow BE=\dfrac{CD}{BD.BC}=\dfrac{12}{6.6\sqrt[]{3}}=\dfrac{1}{3\sqrt[]{3}}\left(cm\right)\)

Xét Δ BEC ta có :

\(BC^2=BE^2+EC^2\Rightarrow EC^2=BC^2-BE^2=36-\dfrac{1}{27}\)

\(\Rightarrow EC^2=\dfrac{971}{27}\Rightarrow EC=\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)

ABHE là hình chữ nhật (AB \(//\) HE;AH \(//\) BE vì cùng vuông với CD; Góc H=90o )

\(\Rightarrow AB=HE=CD-2EC=12-\dfrac{2}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\) (tính chất hình thang cân)

Chu vi hình thang cân ABCD :

\(2BC+DC+AB=2.6+12+12-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}=36-\dfrac{1}{3}.\sqrt[]{\dfrac{971}{3}}\left(cm\right)\)