Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADC có
M là trung điểm của AD
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔADC
Suy ra: MN//DC và \(MN=\dfrac{DC}{2}\)
Xét ΔCAB có
E là trung điểm của BC
N là trung điểm của AC
Do đó: EN là đường trung bình của ΔCAB
Suy ra: EN//AB và \(EN=\dfrac{AB}{2}\)
b: Ta có: MN//DC
EN//AB
mà AB//DC
nên MN//EN
mà MN và EN có điểm chung là N
nên M,N,E thẳng hàng
a)Xét hình bình hành ABED có:
AB=DE
AB//DE(doAB//DC)
=>tứ giác ABED là hình bình hàXetnh vì có 2 cạnh đối // và = nhau(dấu hiệu nhận biết thứ 3)
b)Có AB//DE=>gócBAE=góc AED(2 góc so le trong )
Xét tam giác ANI và tam giác EMI có:
AI=IE(là trung điểm AI)
góc BAE=gócAED(cmt)
góc AIN=gócEIM(2 góc đối đỉnh)
=>tam giác ANI=tam giác EIM(g.c.g)
=>AN=ME(2 cạnh tương ứng)
có AB=DE
AN=ME
=>AB-AN=DE-ME
=>NB=DM
mà DM=MC(do M là trung điểm DC)
=>NB=MC
Lại có NB//MC (do AB//DC)
Xét tứ giác NBMC có :
NB=MC(cmt)
NB//MC(cmt)
=>tứ giác NBMC là hình bình hành vì có 2 cạnh đối //và= nhau(dhnb thứ 3)
=>NM=BC
c)
I A B D C E F K
Gọi I là trung điểm của AB.
Giả sử đường thẳng IE cắt CD tại K1
Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD
Giả sử đường thẳng IF cắt CD tại K2
Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD
do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau
Vậy ta có đpcm
a: Xét ΔADC có
M là trung điểm của AD
MN//DC
Do đó: N là trung điểm của AC
Xét ΔCAB có
N là trung điểm của CA
NK//AB
Do đó:K là trung điểm của CB
b: \(AB=\dfrac{1}{2}\cdot DC=\dfrac{1}{2}\cdot20=10\left(cm\right)\)
Xét ΔADC có M,N lần lượt là trung điểm của AD,AC
=>MN là đường trung bình của ΔADC
=>\(MN=\dfrac{DC}{2}=10\left(cm\right)\)
Xét ΔCAB có N,K lần lượt là trung điểm của CA,CB
=>NK là đường trung bình của ΔCBA
=>\(NK=\dfrac{AB}{2}=5\left(cm\right)\)
MN+NK=MK
=>MK=10+5=15(cm)
Xét ΔABD có:
F là trung điểm của BD
M là trung điểm của AD
=> MF là đường trung bình của ΔABD
=> MF // AB ; 1/2.AB(1)