Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ đường cao $BK$
Tứ giác $ABKH$ có $AB\parallel HK, AH\perp BK$ (cùng vuông góc với $DC$) nên $ABKH$ là hình bình hành. Mà $\widehat{AHK}=90^0$ nên $ABKH$ là hình chữ nhật.
\(\Rightarrow HK=AB\); $AH=BK$
Xét 2 tam giác vuông $ADH$ và $BCK$ có:
\(AD=BC\) (tính chất hình thang cân)
\(AH=BK\)
\(\Rightarrow \triangle ADH=\triangle BCK(ch-cgv)\)
\(\Rightarrow DH=CK\)
Mà \(DH+CK=DC-HK=DC-AB\)
\(\Rightarrow DH=\frac{DC-AB}{2}\) (đpcm)
b)
Theo phần a \(CK=DH=\frac{DC-AB}{2}=\frac{13-5}{2}=4\) (cm)
\(DK=DH+HK=DH+AB=4+5=9\) (cm)
Xét tam giác $BDK$ và $CBK$ có:
\(\widehat{BKD}=\widehat{CKB}=90^0\)
\(\widehat{BDK}=\widehat{CBK}(=90^0-\widehat{DBK})\)
\(\Rightarrow \triangle BDK\sim \triangle CBK(g.g)\Rightarrow \frac{BK}{DK}=\frac{CK}{BK}\)
\(\Rightarrow BK^2=CK.DK=4.9=36\Rightarrow BK=6\) (cm)
Áp dụng đl Pitago cho tam giác vuông $BHK$: \(HB=\sqrt{HK^2+BK^2}=\sqrt{5^2+6^2}=\sqrt{61}\) (cm)
\(S_{ABCD}=\frac{(AB+CD).BK}{2}=\frac{(5+13).6}{2}=54(cm^2)\)
A B C D O M N P Q E I
a) Ta có: \(\Delta\)ABC vuông cân tại B (Vì tứ giác ABCD là hình vuông)
Theo tỉ số lượng giác : \(AC=AB\sqrt{2}\Rightarrow\frac{1}{AB}=\frac{\sqrt{2}}{AC}\Leftrightarrow\frac{AM}{AB}=\frac{AM\sqrt{2}}{AC}\) (1)
Dễ thấy \(\Delta\)AMB ~ \(\Delta\)DME (g.g) \(\Rightarrow\frac{AM}{AB}=\frac{DM}{DE}\) (2)
Lại có: ^AEC = 900 và AC vuông góc BD nên \(\Delta\)AOM ~ \(\Delta\)AEC (g.g) \(\Rightarrow\frac{AM}{AC}=\frac{OM}{CE}\)(3)
Thế (2) và (3) vào (1) ta có hệ thức: \(\frac{DM}{DE}=\frac{OM\sqrt{2}}{CE}\Rightarrow DM.CE=\sqrt{2}.OM.DE\)(đpcm).
b) Áp dụng BĐT AM-GM cho 2 số không âm: \(\frac{OM}{DM}+\frac{OP}{CP}\ge2\sqrt{\frac{OM}{DM}.\frac{OP}{CP}}\)
Từ kết quả câu a ta rút ra: \(\frac{OM}{DM}=\frac{CE}{\sqrt{2}.DE}\). Suy ra: \(\frac{OM}{DM}+\frac{OP}{CP}\ge2\sqrt{\frac{1}{\sqrt{2}}.\frac{CE}{CP}.\frac{OP}{DE}}\)(*)
Ta có các cặp tam giác đồng dạng sau (TH g.g): \(\Delta\)ABP ~ \(\Delta\)ECP và \(\Delta\)BOP ~ \(\Delta\)BED
\(\Rightarrow\frac{CE}{CP}=\frac{AB}{BP}=\frac{R\sqrt{2}}{BP}\) (4) và \(\frac{OP}{DE}=\frac{BP}{BD}=\frac{BP}{2R}\) (5)
Thế (4), (5) vào (*) ta được: \(\frac{OM}{DM}+\frac{OP}{CP}\ge2\sqrt{\frac{1}{\sqrt{2}}.\frac{R\sqrt{2}}{BP}.\frac{BP}{2R}}=\sqrt{2}\)
Vậy Min \(\frac{OM}{DM}+\frac{OP}{CP}=\sqrt{2}\). Dấu "=" xảy ra <=> E là điểm chính giữa cung nhỏ CD.
c) +) Chứng minh SDPQ = SCMN ?
Ta thấy: ^ACD = ^AEB (=450) (2 góc nội tiếp chắn 2 cung bằng nhau) hay ^NEP = ^NCP
=> Tứ giác CENP nội tiếp => ^PNC = ^PEC = ^BEC = ^BDC => NP // OD (2 góc đồng vị bằng nhau)
Theo t/c diện tích miền đa giác: SDPQ = SNPQ + SDPN. Do SDPN = SONP (Vì NP//OD)
Nên SDPQ = SNOPQ (6). Chứng minh tương tự: SCMN = SNMOQ (7)
Mặt khác: Cũng từ NP // OM => SMON = SMOP. Tương tự: SPOQ = SMOP => SMON = SPOQ
Lại theo t/c diện tích miền đa giác: SMON + SNOQ = SPOQ + SNOQ => SNMOQ = SNOPQ (8)
Từ (6),(7),(8) suy ra: SDPQ = SCMN (đpcm).
+) Chứng minh \(\frac{IM}{ME}+\frac{NQ}{AB}+\frac{IP}{PE}=1\)?
Dễ có các tứ giác MOCE và DOPE nội tiếp => ^MOE = ^MCE= ^DPE hay ^ICE = ^IPE => Tứ giác CEIP nội tiếp
=> ^PIE + ^PCE = ^OME + ^OCE (=1800) => ^PIE = ^OME
Xét \(\Delta\)EIP và \(\Delta\)EMO có: ^IPE = ^MOE (cmt); ^PIE = ^OME (cmt) => \(\Delta\)EIP ~ \(\Delta\)EMO (g.g)
=> \(\frac{IP}{PE}=\frac{MO}{OE}=\frac{MO}{OD}\). Qua ĐL Thales (MQ//OC) ta có tỉ số: \(\frac{IP}{PE}=\frac{MO}{OD}=\frac{CQ}{CD}\)
Tương tự: \(\frac{IM}{ME}=\frac{OP}{OC}=\frac{DN}{CD}\). Từ đó có:\(\frac{IM}{ME}+\frac{NQ}{AB}+\frac{IP}{PE}=\frac{DN}{CD}+\frac{NQ}{CD}+\frac{CQ}{CD}=1\)(đpcm).
A B C D O a^2 b^2 M N
(Hình ảnh chỉ mang tính chất minh họa)
a) Kẻ DM và CN vuông góc với AB
=> MN = CD (Theo cách vẽ)
=> DC - AB = MN - AB = MA + BN
=> DC - AB = MA + BN
Tam giác vuông MAD và NBC vuông lần lượt tại M,N
=> AM < AD và BN < BC (Cạnh góc vuông < Cạnh huyền)
=> DC - AB = MA + BN < AD + BC (ĐPCM