K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB\(\sim\)ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)

=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)

=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)

=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)

=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)

b: Xét ΔCAD có OE//AD

nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)

Xét ΔBDC có OF//BC

nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)

=>DE=CF

 

Bài 2: 

Xét ΔADC có OM//DC

nen OM/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1) (2)và (3) suy ra OM=ON

17 tháng 2 2022

tham khảo :

https://lazi.vn/edu/exercise/582904/cho-hinh-thang-abcd-ab-cd-cheo-cat-nhau-tai-o-p

16 tháng 1 2017

A B C D M N P Q O

Áp dụng hệ quả của định lí Ta-lét,ta có :

\(\Delta AMO\)có NC // AM\(\Rightarrow\frac{NC}{MA}=\frac{ON}{OM}\left(1\right)\)

\(\Delta MBO\)có ND // MB\(\Rightarrow\frac{ND}{MB}=\frac{ON}{OM}\left(2\right)\)

\(\Delta ADB\)có OP // AB\(\Rightarrow\frac{OP}{AB}=\frac{OD}{DB}\left(3\right)\)

\(\Delta ACB\)có OQ // AB\(\Rightarrow\frac{OQ}{AB}=\frac{OC}{AC}\left(4\right)\)

\(\Delta ODC\)có AB // CD\(\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\left(5\right)\)

Từ (1) và (2),ta có\(\frac{NC}{MA}=\frac{ND}{MB}\Rightarrow\frac{NC}{ND}=\frac{MA}{MB}=k\Rightarrow\frac{ND}{NC}=\frac{1}{k}\)

Từ (3),(4) và (5),ta có\(\frac{OP}{AB}=\frac{OQ}{AB}\)=> OP = OQ => O là trung điểm PQ

17 tháng 1 2017

thông cảm định lí Ta-let mình chưa học tới