Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABD và tam giác BDC
có \(\widehat{DAB}=\widehat{CBD}\)
\(\widehat{ABD}=\widehat{BDC}\)(so le trong, AB // CD)
nên tam giác ABD đồng dạng với tam giác DBC
2
Xét tam giác ADC có
M là trung điểm của AD
N là trung điểm của AC
suy ra MN là đường trung bình của tam giác ADC
nên MN // DC (1)
Xét tam giác ABC có
K là trung điểm của BC
N là trung điểm của AC
suy ra NK là đường trung bình của tam giác ABC
nên NK //AB
mà AB // CD
do đó NK // CD (2)
Từ (1), (2) và theo tiên đề ơ-clít ta có
NK trùng với MN
do đó M,N,K thẳng hàng
Hình bạn tự vẽ nhé !
Câu 1:
Xét tam giác ABD và tam giác DBC có
Góc DAB = góc CBD
Góc ABD = góc BDC ( so le trong AB // CD )
nên tam giác ABD đồng dạng tam giác DBC
Câu 2:
Xét tam giác ADC có:
M là trung điểm của AD
N là trung điểm của AC
=> MN là đường trung bình của tam giác ADC => MN // DC (1)
Xét tam giác ABC có:
K là trung điểm của BC
N là trung điểm của AC
=> NK là đường trung bình của tam giác ABC => NK // AB
mà AB / CD => NK // CD (2)
Từ (1) và (2) theo tiên đề Ơ - clit ta có:
NK trùng với MN => M, N, K thẳng hàng ( đpcm )
Kẻ \(BH\perp CD\)
Mà \(CD\perp AD\left(gt\right)\Rightarrow BH//AD\)
Hình thang ABHD (AB//HD) có BH//AD nên \(\hept{\begin{cases}HD=AB=5\left(cm\right)\\BH=AD\end{cases}}\) (t/c hình thang)
\(HD+HC=DC\Rightarrow5+HC=9\Rightarrow HC=4\left(cm\right)\)
\(\Delta HBC\)vuông cân tại H nên \(HB=HC=4cm\Rightarrow AD=4cm\left(AD=BH\right)\)
Áp dụng định lí Pitago tính được \(BC=\sqrt{32}\left(cm\right)\)
Chu vi hình thang vuông ABCD là:
\(AB+BC+CD+AD=5+\sqrt{32}+9+4=18+\sqrt{32}\left(cm\right)\)
Chúc bạn học tốt.
A B C D
a)
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Leftrightarrow\frac{C+D}{2}+C+D=360^o\)
\(\Leftrightarrow\frac{3\left(C+D\right)}{2}=360^o\)
\(\Leftrightarrow3\left(C+D\right)=720^o\)
\(\Leftrightarrow C+D=240^o\)
\(\Leftrightarrow A+B=120\)
Câu hỏi của headsot96 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!