K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

Tứ giác nội tiếp

a ) Vì ABCD nội tiếp nên ta có :

\(\widehat{ADC}+\widehat{ABC}=180^0\) và ABCD hình thang nên \(\widehat{ABC}+\widehat{BAD}=180^0\) ( hai góc trong cùng phía)

\(\Rightarrow\widehat{ADC}=\widehat{BAD}\) \(\Rightarrow ABCD\) là hình thang cân (hình thang có hai góc đáy bằng nhau)

b ) Ta có OOB = OC ; OA = OD và \(AB=BC\) (hai cạnh bên của hình thang cân)

\(\Rightarrow\Delta BOA=\Delta COD\)

\(\Rightarrow\widehat{COD}=\widehat{OBA}\)\(\widehat{OBA}+\widehat{OBI}=180^0\) \(\Rightarrow\widehat{COD}+\widehat{OBA}=180^0\)

\(\Rightarrow\) Tứ giác IBOD nội tiếp

c ) Ta có : \(\widehat{OBK}=\widehat{ODK}=90^0\)

\(\Rightarrow\widehat{OBK}+\widehat{ODK}=180^0\)

\(\Rightarrow\) Tứ giac OBKD nội tiếp ( đpcm )

\(\Rightarrow K\) trên đường tròn ngoại tiếp của \(\Delta BOD\) và OBDI nội tiếp

\(\Rightarrow I\) trên đường tròn ngoại tiếp của \(\Delta OBD\)

\(\Rightarrow5\) điểm O; B; I; K; D thuộc đường tròn ngoại tiếp của \(\Delta OBI\)

\(\Rightarrow BIKD\) nội tiếp ( đpcm )

4 tháng 5 2023

Cho em xin đáp án câu c bài này ah 

AH
Akai Haruma
Giáo viên
27 tháng 2 2018

Lời giải:

Cung chứa góc

a)

Ta có:

\(BC\parallel AD\Rightarrow \widehat{ICB}=\widehat{IDA}\) (hai góc đồng vị)

Tứ giác $ABCD$ nội tiếp nên \(\widehat{IBC}=\widehat{IDA}\)

\(\Rightarrow \widehat{ICB}=\widehat{IBC}\) \(\Rightarrow \triangle IBC\) cân tại $I$

Do đó \(\widehat{BID}=\widehat{BIC}=180^0-2\widehat{ICB}=180^0-2\widehat{IDA}\) (1)

Mặt khác theo tính chất hai tiếp tuyến cắt nhau suy ra \(BK=KD\Rightarrow \triangle BKD\) cân, suy ra \(\widehat{BKD}=180^0-2\widehat{KDB}\) (2)

Vì \(\widehat{IBC}=\widehat{ICB}\) ta suy ra hai góc đồng vị tương ứng của nó cũng bằng nhau hay \(\widehat{IAD}=\widehat{IDA}\)

\(\Leftrightarrow \text{cung BD}=\text{cung AC}\Leftrightarrow \text{cung AB}=\text{cung CD}\)

Mà: \(\widehat{BDA}=\frac{1}{2}\text{cung AB}\); $DK$ là tiếp tuyến của (O) nên \(\widehat{CDK}=\frac{1}{2}\text{cung CD}\)

Suy ra \(\widehat{BDA}=\widehat{CDK}\Rightarrow \widehat{BDA}+\widehat{BDC}=\widehat{CDK}+\widehat{BDC}\)

hay \(\widehat{IDA}=\widehat{BDK}\) (3)

Từ (1); (2); (3) \(\Rightarrow \widehat{BID}=\widehat{BKD}\Rightarrow BIKD\) nội tiếp (đpcm)

b)

$BIKD$ nội tiếp \(\Rightarrow \widehat{KID}=\widehat{KBD}=\widehat{KDB}\)

Mà \(\widehat{KDB}=\widehat{IDA}\) (cmt) nên \(\widehat{KID}=\widehat{IDA}\). Hai góc này ở vị trí so le trong nên \(IK\parallel AD\parallel BC\)