Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẽ Bx // AC cắt AM tại Q.
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{MA}{AQ}=\dfrac{MC}{BC}\\\dfrac{MC}{MB}=\dfrac{AC}{BQ}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MA.BC=MC.AQ\\MC.BQ=MB.AC\end{matrix}\right.\)
\(\Rightarrow MB.AC+MC.AB=MC.BQ+MC.AB=MC\left(AB+BQ\right)>MC.AQ=MA.BC\)
bai 1/
pt <=> x+\(\sqrt{3-x^2}\)=x\(\sqrt{3-x^2}\)<=> x=\(\sqrt{3-x^2}\)(x-1) (*)
nhan thay x=1 ko la n0 cua pt nen chia ca 2 ve cua (*) cho x-1 dc
\(\frac{x}{x-1}\)=\(\sqrt{3-x^2}\)
binh phg 2 ve va thu goc ta duoc pt x^4 - 2x^3 - x^2 + 6x - 3 = 0
<=> (x^2-3x+3)(x^2+x-1)=0
ban tu giai tiep
A B C D O a^2 b^2 M N
(Hình ảnh chỉ mang tính chất minh họa)
a) Kẻ DM và CN vuông góc với AB
=> MN = CD (Theo cách vẽ)
=> DC - AB = MN - AB = MA + BN
=> DC - AB = MA + BN
Tam giác vuông MAD và NBC vuông lần lượt tại M,N
=> AM < AD và BN < BC (Cạnh góc vuông < Cạnh huyền)
=> DC - AB = MA + BN < AD + BC (ĐPCM
A B C D H
do AD=CB=5a
trong tam giac ACB vuong co
\(\tan B=\frac{AC}{CB}=\frac{12}{5}\)
MA \(\frac{\sin B+\cos B}{\sin B-\cos B}=\frac{\frac{\sin B}{\cos B}+1}{\frac{\sin B}{\cos B}-1}=\frac{\tan B+1}{\tan B-1}=\frac{\frac{12}{5}+1}{\frac{12}{5}-1}=\frac{17}{7}\)
A B C D M N I P E F G
Gọi G là trung điểm của CD. Cho MN cắt AG tại I. Ta sẽ chứng minh điểm I cố định.
Thật vậy: Kéo dài tia BG cắt tia AD tại P. Qua 2 điểm B và P kẻ các đường thẳng song song với MN, chúng cắt đường thẳng AG lần lượt ở 2 điểm E và F.
Dễ thấy: \(\Delta\)BGC = \(\Delta\)PGD (g.c.g) => GB = GP (2 cạnh tương ứng)
=> \(\Delta\)BEG = \(\Delta\)PFG (g.c.g) => GE = GF (2 cạnh tương ứng) => EF = 2.GE
Xét \(\Delta\)PAF có: N thuộc AP; I thuộc AF; IN // PF => \(\frac{AP}{AN}=\frac{AF}{AI}=\frac{AE+EF}{AI}=\frac{AE+2.GE}{AI}\)(ĐL Thales)
Do \(\Delta\)BGC = \(\Delta\)PGD (cmt) nên BC = PD. Mà BC = AD => PD = AD = 1/2 .AP
\(\Rightarrow\frac{2.AD}{AN}=\frac{AE+2.GE}{AI}\). Tương tự: \(\frac{AB}{AM}=\frac{AE}{AI}\)
Do đó: \(\frac{AB}{AM}+\frac{2.AD}{AN}=\frac{2\left(AE+GE\right)}{AI}=\frac{2.AG}{AI}\). Suy ra \(\frac{2.AG}{AI}=4\)(Theo gt)
\(\Rightarrow\frac{AG}{AI}=2\)=> I là trung điểm của AG
Ta thấy: Hbh ABCD cố định có G là trung điểm CD nên AG cố định. Mà I là trung điểm AG nên I cũng cố định.
Lại có: MN đi qua I nên MN luôn đi qua 1 điểm cố định (đpcm).