K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

A D C B O 1 2 3 4

30 tháng 7 2016

Bạn tự vẽ hình ... 

Ta có : \(\frac{S_1}{S_2}=\frac{OD}{OB}=\frac{S_4}{S_3}\) \(\Rightarrow S_1.S_3=S_2.S_4\)(1)

Dễ dàng chứng minh được S2=S4 (Bạn tự chứng minh)

Xét : \(\left(\sqrt{S_2}-\sqrt{S_4}\right)^2=0\Leftrightarrow S_2+S_4=2\sqrt{S_2.S_4}\Leftrightarrow S_2+S_4=2\sqrt{S_1.S_3}\)(suy ra từ (1))

Ta có : \(S_{ABCD}=S_1+S_2+S_3+S_4=S_1+S_3+2\sqrt{S_1.S_3}=\left(\sqrt{S_1}+\sqrt{S_3}\right)^2\)

Đến đây thay số là được :)

20 tháng 11 2018

3. A B C D P Q I

20 tháng 11 2018

Trên tia đối của tia BA lấy I sao cho BI = DQ

\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)

Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)

Ta có: \(AP+AQ+PQ=2AB\)

\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)

\(\Rightarrow PQ=PB+QD\)

\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)

\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)

9 tháng 4 2015

Nhận xét : A, B, C, D có vai trò bình đẳng nhau nên nếu O không thuộc miền trong ∆ICD, chẳng hạn O thuộc miền trong ∆IAD, khi đó dễ dàng thấy S(ICD) < S(IAD). Vậy chỉ xét trường hợp O thuộc miền trong ∆ICD. 
Vẽ OH _|_ AC tại H; Vẽ OK _|_ BK tại K => IK = OH; IH = OK. Đặt IC = a > 0; ID = b > 0; 
Ta có: CH = IC - IH <=> CH² = IC² + IH² - 2IC.IH <=> OC² - OH² = IC² + OK² - 2IC.OK <=> 2IC.OK = IC² - OC² + (OH² + OK²) = IC² - OC² + OI² <=> 2a.OK = a² - 5 + 1 = a² - 4 <=> 2OK = a - 4/a <=> 4OK² = a² + 16/a² - 8 (1) 
Tương tự : 4OH² = b² + 16/b² - 8 (2) 
(1) + (2) : a² + b² + 16(1/a² + 1/b²) - 16 = 4(OH² + OK²) = 4OI² = 4 
<=> a² + b² + 16(1/a² + 1/b²) = 20 
<=> ab + 16/ab ≤ 10 (vì 2ab ≤ a² + b² ; 2/ab ≤ 1/a² + 1/b²) 
<=> S² - 5S + 4 ≤ 0 ( với S = ab/2 = S(ICD)) 
<=> (S - 5/2)² ≤ 9/4 
<=> - 3/2 ≤ S - 5/2 ≤ 3/2 
<=> 1 ≤ S ≤ 4 
Vậy Max S = 4 khi a = b = 2√2; Min S = 1 khi a = b = √2 
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20150404221719AAVrhVe

30 tháng 7 2017

a,

S(ADC)=S(BDC) (vì có chung đáy và có chiều cao bằng nhau)

Mà:S(ADC)=S(AOD)+S(DOC)(1) và S(BDC)=S(BOC)+S(DOC) (2)

T­­­­ư (1) và (2) suy ra :S(ADO)=S(BOC)

b,

EF//AB nênAE/AD=BF/BC

Tam giác ADC có :OE/DC=AE/AD

Tam giác BDC có :OF/DC=BF/BC

Suy ra :OE/DC=OF/DC=>OE=OF

c,

Ta có :ED/AD+AE/AD=1. Mà ED/AD=EO/AB, AE/AD=EO/DC 

=>EO/AB+EO/DC=1

=>1/AB+1/DC=1/OE

Mặt khác:EO=OF=1/2EF =>1/OE=2/EF

=>1/AB+1/DC=2/EF

30 tháng 7 2017

phương thảo nguyễn thị

a, S(ADC)=S(BDC) (vì có chung đáy và có chiều cao bằng nhau)
Mà:S(ADC)=S(AOD)+S(DOC)(1) và S(BDC)=S(BOC)+S(DOC) (2)
T­­­­ư (1) và (2) suy ra :S(ADO)=S(BOC)
b,EF//AB nênAE/AD=BF/BC
Tam giác ADC có :OE/DC=AE/AD
Tam giác BDC có :OF/DC=BF/BC
Suy ra :OE/DC=OF/DC=>OE=OF

c,Ta có :ED/AD+AE/AD=1. Mà ED/AD=EO/AB, AE/AD=EO/DC 
=>EO/AB+EO/DC=1
=>1/AB+1/DC=1/OE
Mặt khác:EO=OF=1/2EF =>1/OE=2/EF
=>1/AB+1/DC=2/EF

hoặc tham khảo Toán 8_khó | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam

Các bạn giúp mình với1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và...
Đọc tiếp

Các bạn giúp mình với
1> Cho hình thang ABCD có AB//CD , AC \(\ge\)BD và có diện tích hình thang bằng 1. Giá trị nhỏ nhất của AC co thể là bao nhiêu?

2. Cho tứ giác ABCD có AB+DC+AC = 10cm. Tính đường chéo BD biết diện tích tứ giác ABCD đạt max ?

3. Cho tam giác ABC vuông cân tại A. Hãy nội tiếp trong tm giác đó 1 hình chữ nhật có diện tích max

4. Cho hình vuông ABCd có độ dài 1 cạnh là a . Trên hai cạnh AD và aB lần lượt lấy 2 điểm M,N sao cho chu vi AMN là 2a Tìm vị trí điểm M và N đê diện tích tam giác AMN đạt max

5. Cho tam giác ABC có diện tích ko đổi Các đường phân giác trong cua các góc A,B,C lần lượt cắt các cạnh BC,AC,AB tại D,E,F. Xác định hình dạng tam giác ABC đê diện tích tam giác DÈF đạt max

6. Cho tam giác ABC, M ở trong tam giác các đường thẳng AM,BM,CM lần lượt cắt cách cạnh BC,AC,AB tại D,E,F. Xác định vị trí của điểm M để diện tích tam giác DEF đạt max

1
29 tháng 9 2016

khó quá đi à