Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia BA lấy I sao cho BI = DQ
\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)
Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)
Ta có: \(AP+AQ+PQ=2AB\)
\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)
\(\Rightarrow PQ=PB+QD\)
\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)
\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)
Nhận xét : A, B, C, D có vai trò bình đẳng nhau nên nếu O không thuộc miền trong ∆ICD, chẳng hạn O thuộc miền trong ∆IAD, khi đó dễ dàng thấy S(ICD) < S(IAD). Vậy chỉ xét trường hợp O thuộc miền trong ∆ICD.
Vẽ OH _|_ AC tại H; Vẽ OK _|_ BK tại K => IK = OH; IH = OK. Đặt IC = a > 0; ID = b > 0;
Ta có: CH = IC - IH <=> CH² = IC² + IH² - 2IC.IH <=> OC² - OH² = IC² + OK² - 2IC.OK <=> 2IC.OK = IC² - OC² + (OH² + OK²) = IC² - OC² + OI² <=> 2a.OK = a² - 5 + 1 = a² - 4 <=> 2OK = a - 4/a <=> 4OK² = a² + 16/a² - 8 (1)
Tương tự : 4OH² = b² + 16/b² - 8 (2)
(1) + (2) : a² + b² + 16(1/a² + 1/b²) - 16 = 4(OH² + OK²) = 4OI² = 4
<=> a² + b² + 16(1/a² + 1/b²) = 20
<=> ab + 16/ab ≤ 10 (vì 2ab ≤ a² + b² ; 2/ab ≤ 1/a² + 1/b²)
<=> S² - 5S + 4 ≤ 0 ( với S = ab/2 = S(ICD))
<=> (S - 5/2)² ≤ 9/4
<=> - 3/2 ≤ S - 5/2 ≤ 3/2
<=> 1 ≤ S ≤ 4
Vậy Max S = 4 khi a = b = 2√2; Min S = 1 khi a = b = √2
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20150404221719AAVrhVe
a,
S(ADC)=S(BDC) (vì có chung đáy và có chiều cao bằng nhau)
Mà:S(ADC)=S(AOD)+S(DOC)(1) và S(BDC)=S(BOC)+S(DOC) (2)
Tư (1) và (2) suy ra :S(ADO)=S(BOC)
b,
EF//AB nênAE/AD=BF/BC
Tam giác ADC có :OE/DC=AE/AD
Tam giác BDC có :OF/DC=BF/BC
Suy ra :OE/DC=OF/DC=>OE=OF
c,
Ta có :ED/AD+AE/AD=1. Mà ED/AD=EO/AB, AE/AD=EO/DC
=>EO/AB+EO/DC=1
=>1/AB+1/DC=1/OE
Mặt khác:EO=OF=1/2EF =>1/OE=2/EF
=>1/AB+1/DC=2/EF
phương thảo nguyễn thị
a, S(ADC)=S(BDC) (vì có chung đáy và có chiều cao bằng nhau)
Mà:S(ADC)=S(AOD)+S(DOC)(1) và S(BDC)=S(BOC)+S(DOC) (2)
Tư (1) và (2) suy ra :S(ADO)=S(BOC)
b,EF//AB nênAE/AD=BF/BC
Tam giác ADC có :OE/DC=AE/AD
Tam giác BDC có :OF/DC=BF/BC
Suy ra :OE/DC=OF/DC=>OE=OF
c,Ta có :ED/AD+AE/AD=1. Mà ED/AD=EO/AB, AE/AD=EO/DC
=>EO/AB+EO/DC=1
=>1/AB+1/DC=1/OE
Mặt khác:EO=OF=1/2EF =>1/OE=2/EF
=>1/AB+1/DC=2/EF
hoặc tham khảo Toán 8_khó | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam
A D C B O 1 2 3 4
Bạn tự vẽ hình ...
Ta có : \(\frac{S_1}{S_2}=\frac{OD}{OB}=\frac{S_4}{S_3}\) \(\Rightarrow S_1.S_3=S_2.S_4\)(1)
Dễ dàng chứng minh được S2=S4 (Bạn tự chứng minh)
Xét : \(\left(\sqrt{S_2}-\sqrt{S_4}\right)^2=0\Leftrightarrow S_2+S_4=2\sqrt{S_2.S_4}\Leftrightarrow S_2+S_4=2\sqrt{S_1.S_3}\)(suy ra từ (1))
Ta có : \(S_{ABCD}=S_1+S_2+S_3+S_4=S_1+S_3+2\sqrt{S_1.S_3}=\left(\sqrt{S_1}+\sqrt{S_3}\right)^2\)
Đến đây thay số là được :)