K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

#Hình bạn tự vẽ nhé!!!#

a)Ta có: AM=DM(M là trung điểm của AD); BN=CN(N là trung điểm của BC)

\(\Rightarrow\)MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN//CD\left(1\right)\)

Ta lại có:AM=DM(cmt); AE=CE(E là trung điểm của AC)

\(\Rightarrow\)ME là đường trung bình của \(\Delta ACD\)

\(\Rightarrow ME//CD\left(2\right)\)

Từ(1) và (2), suy ra:\(MN\equiv ME\)(theo tiên đề Ơ-clit)

                           \(\Rightarrow M,N,E\) thẳng hàng (3)    

Vì BN=CN(cmt); BF=DF(F là trung điểm của BD)

\(\Rightarrow\)NF là đường trung bình của \(\Delta BCD\)

\(\Rightarrow NF//CD\left(4\right)\)

Từ(1) và (4), suy ra:\(MN\equiv NF\)(theo tiên đề Ơ-clit)

                           \(\Rightarrow M,N,F\)  thẳng hàng(5)

Từ (2) và (5), suy ra:M,N,P,Q thẳng hàng

 
4 tháng 7 2019

A B C D M N F E

a) +)Xét hình thang ABCD có: M là trug điểm AD, N là trung điểm BC

=> MN là đường trung bình hình thang ABCD

=> MN//AB//DC (1)

+) xét tam giác ADC có: M là trung điểm AD; E là trung điểm EC

=> ME là đường trung bình tam giác ADC

=> ME//=1/2 DC (2)

+) Xét tam giác ADB có M là trung điểm AD, F là trung điểm DB 

=> MF là đường trung bình của tam giác ADB

=> MF//=1/2 AB (3)

Từ (1), (2), (3) suy ra MN, ME, MF cùng nằm trên một đường thẳng

=> M, N, E, F thẳng hàng 

b) 

Ta có: \(EF=ME-MF=\frac{1}{2}DC-\frac{1}{2}AB=\frac{DC-AB}{2}\)

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0
bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC. 2) tứ giác EFQP là hình gì ? 3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm 4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\) bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC. 2) tứ giác EFQP là hình gì ? 3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm 4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN. 2) AM = MN = NC . 3) 2EN = DM + BC .4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC. 1) C/m E ,F ,I thẳng hàng . 2) tính \(S_{ABCD}\) . 3) so sánh \(S_{ADC}\)\(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính \(EF\le\frac{AB+CD}{2}\)

3) tứ giác ABCD phải có điều kiện gì thì EF = \(\frac{AB+CD}{2}\)

1
10 tháng 9 2019

các bạn vẽ hình giúp minh với

8 tháng 8 2015

a) tam giác abd có

am=md;bn=nd

=>mn là đường trung bình của tam giác abd

=>mn//ab(1)

tương tự vói tam giác bcd ta có

nq//cd(2)

mà ab//cd(3)

từ (1);(2) và (3) suy ra m;n;q thẳng hàng(*)

tam giác abc có

ap=pc;bq=cq

=>pq là đường trung bình của tam giác abc

=>pq/ab(4)

từ (1);(2) và (4) suy ra m;p;q thẳng hàng(**)

từ (*) và (**) suy ra m;n;p;q thảng hàng

5 tháng 9 2017

a) hình thang ABCD có :

AM = MD ( gt )

BN = NC ( gt )

\(\Rightarrow\)MN - đtb httg ABCD

\(\Rightarrow\)MN // AB // CD   ( 1 )

t/g ABD có :

AM = MD ( gt )

BQ = QD ( gt )

\(\Rightarrow\)MQ - đtb t/g ABD

\(\Rightarrow\)MQ // AB   ( 2 )

t/g ACD có :

AM = MD ( gt )

AP = PC ( gt )

\(\Rightarrow\)MP - đtb t/g ACD

\(\Rightarrow\)MP // CD   ( 3 )

Từ ( 1 ) ; ( 2 ) ; ( 3 ) suy ra M , N , P , Q thẳng hàng

b)  \(MP=\frac{CD}{2}\)    ( Vì MP - đtb t/g ACD )

\(MQ=\frac{AB}{2}\)   ( Vì MQ - đtb t/g ABD )

\(\Rightarrow\)\(MP-MQ=\frac{CD-AB}{2}\)

\(\Rightarrow\)\(PQ=\frac{CD-AB}{2}\)

5 tháng 9 2017

tự vẽ hình :)

a: Xét ΔEAB và ΔEMD có

góc EAB=góc EMD

góc AEB=góc MED

=>ΔEAB đồng dạng vơi ΔEMD

=>EM/EA=AB/MD=AB/MC

Xet ΔFAB và ΔFCM có

góc FAB=góc FCM

góc AFB=góc CFM

Do đó: ΔFAB đồng dạng với ΔFCM

=>FB/FM=AB/CM

=>FM/FB=CM/AB=DM/AB=ME/EA

=>EF//AB

b: Xet ΔBMC có FN//MC

nên FN/MC=BN/BC

=>FN/MD=AH/AD

Xét ΔADM có HE//DM

nên HE/DM=AH/AD

Xét ΔBDC có EN//DC

nên EN/DC=BN/BC=AH/AD

=>(EF+FN)/(2DM)=AH/AD=HE/DM=FN/MD

=>(EF+FN)/2=HE=FN

=>EF+FN=2FN

=>FN=EF=HE

Sửa đề: M là trung điểm của AD

a: Xét ΔADB có

M là trung điểm của AD
E là trung điểm của DB

Do đó: ME là đường trung bình

=>ME//AB vàME=AB/2

Xét ΔCAB có

F là trung điểm của AC
G là trung điểm của BC

Do đó: FG là đường trung bình

=>FG//AB và FG=AB/2

Xét ΔBDC có

E là trung điểm của BD

G là trung điểm cua BC

DO đó: EG là đừog trung bình

=>EG//DC và EG=DC/2

Ta có: EG//DC

FG//AB

DC//AB

Do đó: F,G,E thẳng hàng(1)

Ta có: ME//AB

EG//AB

Do đó: M,E,G thẳng hàng(2)

Từ (1) và (2) suy ra M,E,F,G thẳng hàng

b: EF=EG-FG

nên \(EF=\dfrac{CD-AB}{2}\)