Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)
A B C D O J I
Vì OJ // AB, theo định lý Ta-lét ta có:
\(\dfrac{OB}{DB}=\dfrac{JA}{DA}\) (1)
Vì OJ // AB, theo hệ quả của định lý Ta-lét ta có:
\(\dfrac{OD}{DB}=\dfrac{OJ}{AB}\) (2)
Mà OJ // CD, theo hệ quả của định lý Ta-lét ta có:
\(\dfrac{OA}{AC}=\dfrac{JA}{DA}\) (3)
Vì OI // AB, theo định lý Ta-lét ta có:
\(\dfrac{OA}{AC}=\dfrac{OJ}{CD}\) (4)
Vì OI // CD, theo hệ quả của định lý Ta-lét ta có:
\(\dfrac{OB}{DB}=\dfrac{OI}{CD}\) (5)
Từ (1), (3) \(\Rightarrow\dfrac{OB}{DB}=\dfrac{OA}{AC}\) (6)
Từ (4), (5), (6) \(\Rightarrow\dfrac{OJ}{CD}=\dfrac{OI}{CD}\)
\(\Rightarrow OJ=OI\) (7)
Ta có biểu thức : \(\dfrac{1}{AB}+\dfrac{1}{CD}\)(8)
Từ (2), (7) \(\Leftrightarrow AB=\dfrac{DB.OI}{OD}\) (9)
(5) \(CD=\dfrac{DB.OI}{OB}\) (10)
Thay (9), (10) vào biểu thức (8) ta có:
1:\(\dfrac{DB.OI}{OD}+1:\dfrac{DB.OI}{OB}\)
= \(1.\dfrac{OD}{DB.OI}+1.\dfrac{OB}{DB.OI}\)
= \(\dfrac{OD}{DB.OI}+\dfrac{OB}{DB.OI}\)
=\(\dfrac{OD+OB}{DB.OI}\)
=\(\dfrac{DB}{DB.OI}=\dfrac{1}{OI}\)
\(\Rightarrow\dfrac{1}{OI}=\dfrac{1}{AB}+\dfrac{1}{CD}\) (11)
b) Từ (7) \(\Rightarrow\) OJ = OI = \(\dfrac{1}{2}IJ\)
\(\Leftrightarrow IJ=2OI\)
\(\Leftrightarrow\dfrac{1}{OI}=\dfrac{2}{IJ}\) (12)
Từ (11), (12) \(\Rightarrow\dfrac{2}{IJ}=\dfrac{1}{AB}+\dfrac{1}{CD}\)