K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MN=BN/NC

=>AM/AD=BN/BC(1)

Xét ΔADC có MO//DC

nên MO/DC=AM/AB(2)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(3)

Từ (1), (2) và (3) suy ra MO=ON(đpcm)

b:

Để \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\) thì \(\dfrac{MN}{AB}+\dfrac{MN}{CD}=2\)

MN=2ON=2OM

\(\dfrac{2OM}{AB}+\dfrac{2ON}{CD}=2\left(\dfrac{OM}{AB}+\dfrac{ON}{CD}\right)\)

mà OM/AB=DO/DB

và ON/CD=BO/BD

nên \(VT=2\cdot\left(\dfrac{DO}{DB}+\dfrac{BO}{DB}\right)=2\left(đpcm\right)\)

20 tháng 3 2020

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bạn xem cách làm tại đây nhé!

10 tháng 4 2018

cm cho om\(\frac{OM}{CD}\)=\(\frac{ON}{CD}\)

20 tháng 5 2018

bạn cm cai 

27 tháng 1 2016

Tam giác ABD có OE//AB =>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1) 
Tam giác ABC có OF//AB =>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2) 
Tam giác ABO có CD//AB =>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét) 
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3) 
Từ (1) (2) và (3) => OE/AB = OF/AB 
=> OE = OF (điều phải chứng minh.) 
Chúc bạn học giỏi nha.

9 tháng 3 2017

Bạn tự vẽ hình nhá ! ;D

a, Ta có : OM // AB . Áp dụng hệ quả định lý Ta - lét : => \(\dfrac{OM}{AB}\)= \(\dfrac{OD}{DB}\)(1)

ON // AB => \(\dfrac{ON}{AB}\)= \(\dfrac{OC}{AC}\)(2)

AB // Cd => \(\dfrac{OD}{OB}\)= \(\dfrac{OC}{OA}\)=> \(\dfrac{OD}{OB+OD}\)= \(\dfrac{OC}{OA+OC}\)( T/ C tỉ lệ thức ) => \(\dfrac{OD}{DB}\)= \(\dfrac{OC}{AC}\)(3)

Từ (1), (2), (3) , suy ra : \(\dfrac{OM}{AB}\)=\(\dfrac{ON}{AB}\)=> OM = ON (đpcm )

Oài, câu b với câu c làm biếng quá, thứ lỗi cho mk nhé !

7 tháng 4 2017

mk làm hơi tóm tắt tí có chỗ pn tự CM nhé

Lập luận để có ,

Lập luận để có

OM = ON

b, (1,5 điểm)

Xét để có (1), xét để có (2)

Từ (1) và (2) OM.()

0,5đ

Chứng minh tương tự ON.

từ đó có (OM + ON).

b, (2 điểm)

,

Chứng minh được

Thay số để có 20082.20092 = (SAOD)2 SAOD = 2008.2009

Do đó SABCD= 20082 + 2.2008.2009 + 20092 = (2008 + 2009)2 = 40172 (đơn vị DT)

Em tham khảo nha.

Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)

\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)

Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)

\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)

Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

17 tháng 1 2018

a) A B C D O M N

Áp dụng hệ quả Ta-let vào \(\Delta\)OAB và \(\Delta\)OCD(AB//CD)

=>\(\dfrac{AO}{OC}=\dfrac{BO}{DO}\)

=>\(\dfrac{AO}{OC+AO}=\dfrac{BO}{DO+BO}\)

=>\(\dfrac{AO}{AC}=\dfrac{BO}{BD}\)(1)

Áp dụng hệ quả Ta lét vào \(\Delta\)ADC và \(\Delta\)AMO(MN//CD)

=>\(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)(2)

Áp dụng hệ quả Ta lét vào \(\Delta\)BCD và \(\Delta\)BNO(MN//CD)

=>\(\dfrac{NO}{DC}=\dfrac{BO}{BD}\)(3)

Từ (1), (2),(3):

=>\(\dfrac{MO}{DC}=\dfrac{NO}{DC}\)

=> MO=NO(dpcm)

CHÚC BẠN HỌC TỐT!

17 tháng 1 2018

mK GIẢI CÂU 1

https://olm.vn/hoi-dap/detail/197454392847.html

1 tháng 3 2019

thanhs nhìu bn nha

Y
28 tháng 2 2019

2. A B C D O E F

+ AB // CD \(\Rightarrow\dfrac{AO}{CO}=\dfrac{BO}{DO}\)

\(\Rightarrow\dfrac{AO}{AO+CO}=\dfrac{BO}{BO+DO}\Rightarrow\dfrac{AO}{AC}=\dfrac{BO}{BD}\)

+ OE // CD => \(\dfrac{OE}{CD}=\dfrac{AO}{AC}\)

+ OF // CD => \(\dfrac{OF}{DC}=\dfrac{BO}{BD}\)

\(\Rightarrow\dfrac{OE}{CD}=\dfrac{OF}{DC}\Rightarrow OE=OF\)

Bài 1:

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MD=BN/NC

b: AM/MD=BN/NC

=>MD/AM=NC/BN

=>\(\dfrac{MD+AM}{AM}=\dfrac{NC+BN}{BN}\)

=>AD/AM=BC/BN

=>AM/AD=BN/BC

c: AM/AD=BN/BC

=>1-AM/AD=1-BN/BC

=>DM/AD=CN/CB

3 tháng 4 2017

BẠN DÙNG ĐỊNH LÝ TA-LÉT ĐỂ C/M OM=ON

Vì OM // AB & OM // CD nên 

\(\frac{OM}{AB}=\frac{DM}{AD}\&\frac{OM}{CD}=\frac{AM}{AD}\)

\(\Rightarrow\frac{OM}{AB}+\frac{OM}{CD}=\frac{DM}{AD}+\frac{AM}{AD}\)

\(\Leftrightarrow OM\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DM+AM}{AD}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OM}\)(1)

TƯƠNG TỰ \(\frac{1}{AB}+\frac{1}{CB}=\frac{1}{ON}\)(2)

CỘNG VẾ VỚI VẾ CỦA (1) VÀ (2) TA CÓ:

\(2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{ON}\)MÀ OM=ON(C/M TRÊN) NÊN MN=2.OM

\(\Rightarrow2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{OM}=\frac{2}{OM}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2.OM}=\frac{2}{MN}\left(ĐPCM\right)\)

31 tháng 3 2017

Mình mới học lớp 5 thôi nên chỉ vẽ hình thôi à! Thông cảm nha!

Hình như sau:

Thấy đúng thì !