Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Lấy K làm trung điểm của BC
=> MK là đường trung bình của hình thang ABCD
\(\Rightarrow MK=\frac{AB+CD}{2}\)(*)
Tam giác MBC vuông tại M, MK là trung tuyến
\(\Rightarrow MK=\frac{BC}{2}\)(**)
Từ (*) và (**) => AB + CD = BC
b)
Ta có:
\(\widehat{HMC}=\widehat{MBC}=\widehat{KBM}\)
\(\widehat{KMB}=\widehat{KBM}\)
\(\widehat{KMB}=\widehat{DMC}\)
\(\Rightarrow\widehat{HMC}=\widehat{DCM}\)
Ta có:
\(\widehat{HMC}=\widehat{DCM}\)
\(\widehat{MDC}=\widehat{MHC}=90^o\Rightarrow\Delta HMC=\Delta DMC\left(ch-gn\right)\)
\(MC\)chung \(\Rightarrow MH=MD;CH=CD\)
=> MC là đường trung trực của DH => \(MC\perp DH\)và \(MB\perp MC\)
\(\Rightarrow DH//MB\Rightarrow MBHD\)là hình thang
A B E D C M H
a: Sửađề: góc A=góc D=90 độ
Xét tứ giá ABKD có
AB//KD
AD//BK
góc ADK=90 độ
=>ABKD là hình chữ nhật
DK=AB=4cm
=>KC=5cm
=>\(BK=\sqrt{13^2-5^2}=12\left(cm\right)\)
=>AD=12cm
b: Xet ΔIDC có AB//DC
nên IA/ID=AB/DC
=>IA/IA+12=4/9
=>9IA=4IA+48
=>5AI=48
=>AI=9,6cm
IM=9,6+6=15,6cm
c: Xet ΔIMH vuông tại H và ΔBCK vuông tại K co
góc I=góc CBK
=>ΔIMH đồng dạng với ΔBCK
=>MH/CK=IM/BC
=>MH/5=15,6/13=6/5
=>MH=6cm