Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo tại đây nhé, mk bận ko thể giải cho bn dc, thông cảm nha, h mk phải ik ăn đám cứ r, chúc bn hc tốt nhé
http://pitago.vn/question/a-dung-hinh-thang-abcd-ab-cd-biet-day-ab-2-cm-hai-10453.html
trên CD lấy điểm H sao cho DH=AB
Tứ giác ABHD có DH=AB và DH//AB
=>ABHD là HBH
=>AD=BH
DH+HC=CD
2+HC=5
=>HC=3
áp dụng BĐT tam giác trong tam giác BHC ta có
BH+BC>HC
hay AD+BC>3
Đề sửa lại: Hình thang ABCD ( AB//CD ) có AB=2cm CD=5cm. Chứng minh rằng AD + BC>3cm
Giải:
Tg ADC có DC - AD < AC (bất đằng thức tam giác)(1)
tg ABC có AC < AB + BC (bất đằng thức tam giác)(2)
Từ (1) và (2) => DC - AD < AB + BC => DC - AB < AB + BC
mà AB=2cm CD=5cm => 5 - 2 < AB + BC hay AB + BC > 3 (đpcm)
Chúc bạn thành công!
Giải: (sửa giúp)
...v.v...
Từ (1) và (2) => DC - AD < AB + BC => DC - AB < AD + BC
Xét ΔODC có AB//DC
nên \(\dfrac{OA}{OD}=\dfrac{AB}{DC}\)
=>\(\dfrac{OA}{OA+AD}=\dfrac{4}{10}=\dfrac{2}{5}\)
=>\(\dfrac{OA}{OA+3}=\dfrac{2}{5}\)
=>5OA=2(OA+3)
=>5OA=2OA+6
=>3OA=6
=>OA=2(cm)
Kẻ \(BE//AD\)
thì \(AD=BE\)
vÌ \(DE=AB=2cm\)
\(\Rightarrow EC=3cm\)
Xét tam giác BEC ta có :
\(BE+BC>EC=3cm\)
\(\Rightarrow AD+BC>3cm\) (đpcm)
Kẻ BH//AD(H∈CD)BH//AD(H∈CD), kẻ BD
Ta có:
+) AB//CD (hình thang ABCD)
⇒B2ˆ=D1ˆ⇒B2^=D1^ ( 2 góc so le trong )
+) BH//AD (cách vẽ)
⇒D2ˆ=B1ˆ⇒D2^=B1^ ( 2 góc so le trong)
Xét ΔDABΔDAB và ΔBHDΔBHD, ta có:
B2ˆ=D1ˆ(cmt)B2^=D1^(cmt)
BD : chung
D2ˆ=B1ˆ(cmt)D2^=B1^(cmt)
⇒⇒ ΔDABΔDAB = ΔBHDΔBHD (gcg)
⇒AD=BH⇒AD=BH
mà AD=3cm(gt)AD=3cm(gt)
⇒BH=3cm⇒BH=3cm
+) ΔDABΔDAB = ΔBHDΔBHD (cmt)
⇒AB=DH⇒AB=DH
mà AB=4cm(gt)AB=4cm(gt)
⇒DH=4cm⇒DH=4cm
+) DH+HC=DC(H∈DC)DH+HC=DC(H∈DC)
⇒4+HC=8⇒4+HC=8
⇒HC=4cm⇒HC=4cm
Xét ΔBHC,ΔBHC, ta có:
52=32+4252=32+42
⇒BC2=BH2+HC2⇒BC2=BH2+HC2 (Định lý Py-ta-go)
⇒ΔBHC⇒ΔBHC vuông tại H
⇒H1ˆ=900⇒H1^=900
+) AD//BH
⇒ADHˆ=H1ˆ⇒ADH^=H1^ (2 góc động vị)
⇒ADHˆ=900⇒ADH^=900
⇒⇒ Hình thang ABCD là hình thang vuông
Lấy n là trung điểm của ad NM=5cm. Mà N là trung điểm của ad => an=mn=5cm => NM=\(\frac{1}{2}\)ad . Xét tam giác ADN có NM=\(\frac{1}{2}\)ad
=> Tam giác amd vuông ở m hay am vuông góc dm.
Kẻ BM//AD( \(M\in AD\))
Xét tứ giác ABMD có:
BM//AD(cách vẽ)
AB//DM( do AB//CD, \(M\in DC\))
=> Tứ giác ABMD là hình bình hành
=> AD=BM và AB=DM
Ta có: DM+MC=DC
=> AB+MC=DC
=> MC=DC-AB = 7-4=3cm
Xét tam giác BMC có:
BM + BC > MC( bất đẳng thức trong tam giác)
Mà BM=AD, MC= 4cm
=> AD+BC >4cm