Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TAM GIÁC ĐỒNG DẠNG
1, a) Tỉ số hai đoạn thẳng AB và AC : \(\frac{AB}{AC}=\frac{6}{15}\)
b) Tỉ số hai đoạn thẳng AB và AC . : \(\frac{AB}{AC}=\frac{6}{18}=\frac{1}{3}\)
2, ΔMNP ~ ΔABC thì : \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}\)
3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:
A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.
C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.
4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓
Bạn ơi D ở đâu vậy ?
b) Cho ΔABCΔABC có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓
Xét \(\Delta ABC\) có AD là phân giác
\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow BD=\frac{AB.CD}{AC}=3cm\)
5. a) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k = 2. Tìm tỉ số SDÈFvà SABC
\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=2^2=4\)
b) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số SDEF và SABC
\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
6. Cho ΔABC..Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho AD/AB=AE/AC Kết luận nào sai ❓
A. ΔADE∼ΔABC B. DE//BC
C. AE/AD=AC/AB D. ΔADE=ΔABC
7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:
A.ΔABC∼ΔDEF B. ΔABC∼ΔEDF
C. ΔABC∼ΔDFE D.ΔABC∼ΔFED
A D B C
a, xét \(\Delta ABD\) và \(\Delta BDC\) ta có :
∠ABD = ∠BDC ( slt , AB//DC)
\(\frac{AB}{BD}=\frac{BD}{DC}=\frac{2}{4}=\frac{4}{8}=\frac{1}{2}\)
⇒ \(\Delta ABD\) ~ \(\Delta BDC\) ( c - g - c )
→ ∠DAB = ∠DBC = 90o
b, áp dụng pytago vào \(\Delta DBC\) vuông ta có :
DC2 = BD2 + BC2 ⇌ BC2 = DC2 - BD2 = 64 - 16 = 48cm
⇒ BC = \(\sqrt{48}\)
Hình:
8 4 2 A B D C 1 1
~~~
Sửa đề: DC = 8cm
a/ Xét ΔABD và ΔBDC có:
\(\widehat{B_1}=\widehat{D_1}\left(soletrong\right)\)
\(\dfrac{AB}{BD}=\dfrac{BD}{CD}\left(=\dfrac{1}{2}\right)\)
=> ΔABD ~ ΔBDC (c.g.c) (đpcm)
b/ Vì t/g ABD ~ t/g BDC (ý a)
=> \(\widehat{ADB}=\widehat{BCD}=40^o\)
có: \(\widehat{ABC}+\widehat{BCD}=180^o\) (trong cùng phía)
=> \(\widehat{ABC}=180^o-\widehat{BCD}=180^o-40^o=140^o\)
vậy............................
Mashiro Shiina, Phạm Nguyễn Tất Đạt, Aki Tsuki, lê thị hương giang, Nguyễn Thị Ngọc Thơ, nguyen thi vang, Nguyễn Phạm Thanh Nga, Mến Vũ, ...