Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{AKD}=\widehat{KDC}\)(hai góc so le trong, AK//CD)
mà \(\widehat{ADK}=\widehat{KDC}\)(DK là tia phân giác của \(\widehat{ADC}\))
nên \(\widehat{AKD}=\widehat{ADK}\)
hay ΔAKD cân tại A
Ta có: \(\widehat{BKC}=\widehat{KCD}\)(hai góc so le trong, BK//CD)
mà \(\widehat{KCD}=\widehat{BCK}\)(CK là tia phân giác của \(\widehat{BCD}\))
nên \(\widehat{BKC}=\widehat{BCK}\)
hay ΔBKC cân tại B
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a)xét 2 tg ABE và tg KCE có
Góc AEB=góc KEC(đ đ)
BE=EC(E là tđ BC)
Góc ABE= góc ECK(so le trong,AB//CD)
=> ABE=KCE(c.g.c)
b) ADK cân do DE vừa là đường cao vừa là đường trung tuyến(AE=EK do ABE=KCE)
C)tg AED=KED(cgv.cgv)
=>góc ADE= góc EDK
câu d mình quên công thức tính S rồi nên ko làm đc ^^
b)
Bài 1:
Vì AD // BC => Góc A cộng góc B bằng 180 độ. Mà góc A trừ góc B bằng 20 độ.
=> Góc A = (180 + 20) : 2 = 100 độ
Góc B = 80 độ.
Vì AD // BC => Góc C cộng góc D bằng 180 độ .
Mà góc D bằng hai lần góc C => 3C = 180 độ
=> Góc C bằng 60 độ. Góc D bằng 120 độ.
a: Xét ΔADK có góc ADK=góc AKD
nên ΔADK cân tại A
Xét ΔBKC có góc BKC=góc BCK
nên ΔBKC cân tại B
b: Ta có: ΔADKcân tại A
nên AD=AK
Ta có: ΔBKC cân tại B
nên BK=BC
=>AK+KB=AB=AD+BC