K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

undefined

Kẻ đường cao AH và đường cao BK . ⇒AB=HK=1cm

Nên ta có : DH+CK=4 (1)

Theo tỉ số lượng giác cho tam giác ADH và BCK ta lại có :

\(\left\{{}\begin{matrix}AH=tan60\cdot DH\\BK=tan30\cdot CK\end{matrix}\right.\)\(\Rightarrow tan60\cdot DH=tan30\cdot CK\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình :

\(\left\{{}\begin{matrix}DK+CK=4\\\sqrt{3}DH-\dfrac{\sqrt{3}}{3}CK=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DH=1\\CK=3\end{matrix}\right.\)

\(\Rightarrow AH=tan60\cdot DH=\sqrt{3}\cdot1=\sqrt{3}\left(cm\right)\)

\(\Rightarrow S_{ABCD}=12\cdot AH\cdot\left(AB+CD\right)=12\cdot\sqrt{3}\cdot\left(1+5\right)=3\sqrt{3}\left(cm^2\right)\)

Tick hộ nha bạn 😘

4 tháng 10 2018

A B C H K 5cm 1cm 1cm 60 30 D

Kẻ đường cao AH và đường cao BK . \(\Rightarrow AB=HK=1cm\)

Nên ta có : \(DH+CK=4\) (1)

Theo tỉ số lượng giác cho tam giác ADH và BCK ta lại có :

\(\left\{{}\begin{matrix}AH=\tan60.DH\\BK=\tan30.CK\end{matrix}\right.\Rightarrow\tan60.DH=\tan30.CK\) (2)

Từ (1) và (2) ta có hệ phương trình :

\(\left\{{}\begin{matrix}DH+CK=4\\\sqrt{3}DH-\dfrac{\sqrt{3}}{3}CK=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}DH=1\\CK=3\end{matrix}\right.\)

\(\Rightarrow AH=\tan60.DH=\sqrt{3}.1=\sqrt{3}cm\)

\(\Rightarrow S_{ABCD}=\dfrac{1}{2}.AH.\left(AB+CD\right)=\dfrac{1}{2}.\sqrt{3}.\left(1+5\right)=3\sqrt{3}cm^2\)

18 tháng 8 2020

A B C D 2cm 60cm H E 6cm F E H

Mik ghi ý th, bạn tự giải chi tiết nha

a)Vẽ BE//AD,BH vuông góc CD.

CM đc ABED là hình bình hành => DE=2,EC=4

Tam giác BEC vuông tại B và có góc C =30 nên BE=EC:2=4:2=2

=>AD=BE=2

b)

Tam giác BEH vuông tại H có EBH=30 =>EH=BE/2=2:2=1

Dùng định lý PTG ta tính đc đường cao rồi tính đc diện tích nha.

9 tháng 8 2021

từ các đỉnh A,B hạ các đường cao AE,BF vuông góc với CD

dễ chứng minh tứ giác ABFE là hình chữ  nhật

=>EF=AB=12cm

do ABCD là hình thang cân \(=>AD=BC,\angle\left(D\right)=\angle\left(C\right)\)

mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^O\)

\(=>\Delta ADE=\Delta BFC\left(ch-cgn\right)=>DE=FC=\dfrac{1}{2}.\left(DC-EF\right)\)

\(=\dfrac{1}{2}\left(18-12\right)=3cm\)

xét trong tam giác BFC vuông tại F

\(=>\)\(\cos75^o=\dfrac{FC}{BC}=>BC=11,6cm\)

pytago \(=>BF=\sqrt{BC^2-FC^2}=\sqrt{11,6^2-3^2}=11,2cm\)

\(=>S=\dfrac{BF\left(AB+DC\right)}{2}=....\) thay số

5 tháng 8 2021

Kẻ `AH, CK` vuông góc `CD`.

Xét `\DeltaADH` và `\DeltaBCK` có:

`AH =CK` 

`\hatD=\hatC`

`AD=BC` 

`=> \DeltaADH=\DeltaBCK`

`=> DH=CK=x`

Có: `CD=DH+HK+KC = x+12+x=18 => x=3` (cm)

`tanC=(BK)/(CK) <=> tan75^@ = (BK)/3 => BK =6+3\sqrt3 (cm)`

`=> S=1/2 .(AB+CD) .BK = 90+45\sqrt3 ≈ 168 (cm^2)`