Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C a O E F D
a, xét tam giác ABD có : EO // AB (Gt)
=> EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có : OF // AB (gt)
=> OF/AB = OC/CA (hệ quả) (2)
xét tam giác ODC có : AB // DC (gt)
=> DO/DB = OC/CA (hệ quả) (3)
(1)(2)(3) => OE = OF
b, xét tam giác ABD có EO // AB (gt)
=> EO/AB = DE/AD (hệ quả) (4)
xét tam giác ACD có : EO // DC
=> EO/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + EA/AD
=> EO(1/AB + 1/BC) = AD/AD = 1 (*)
xét tam giác ACB có : FO // AB
=> OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có : OF // DC
=> OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = BC/BC = 1 (**)
(*)(**) => OF(1/AB + 1/CD) + OE(1/AB + 1/DC) = 2
=> (OF + OE)(1/AB + 1/DC) = 2
có OF + OE = EF
=> 1/AB + 1/DC = 2/EF
A B C D M E F K H S I J
a) Bằng tính chất của hình bình hành và hệ quả ĐL Thales ta có:
\(\frac{KM}{KH}=\frac{BF}{BC}=\frac{MF}{DC}=\frac{MF}{EF}\). Suy ra KF // EH (Theo ĐL Thales đảo) (đpcm).
b) Gọi giao điểm của EK và HF là S. Ta đi chứng minh B,D,S thẳng hàng. Thật vậy:
Gọi MS cắt EH và KF lần lượt ở I và J.
Theo bổ đề hình thang (cho hình thang KEHF) thì I là trung điểm EH và J là trung điểm KF
Do các tứ giác BKMF và DEMH là hình bình hành nên BD đi qua trung điểm của EH và KF
Từ đó suy ra: 2 đường thẳng BD và MS trùng nhau hay 3 điểm B,D,S thẳng hàng => ĐPCM.
c) Dễ thấy: SKEF = SKHF (Chung đáy KF, cùng chiều cao vì KF//EH) => SKME = SFMH
Mà SMKAE = 2.SKME; SMHCF = 2.SFMH nên SMKAE = SMHCF (đpcm).