Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C
a, Xét tam giác ABC vuông tại A, áp dụng định lí Pytago ta có:
BC2 = AB2 + AC2
BC2 = 212 + 722
BC2 = 5625
BC = 75 (cm)
b, Tam giác ABC vuông tại A, đường cao AH
Ta có: AB2 = BH . BC (định lí 1)
212 = BH . 75
BH = 441 : 75
BH = 5,88 (cm)
Ta có : BC = BH + HC
75 = 5,88 + HC
HC = 75 - 5,88
HC = 69,12 (cm)
Ta có: AH2 = BH . HC
AH2 = 5,88 . 69,12
AH2 = 406,4256
AH = 20,16 (cm)
c, (Bạn tự vẽ tia p/g nha)
Theo tính chất đường phân giác góc B ta có:
=> AD/ DC = AB/ BC
=> AD/ AB = DC/BC
=> AD/ 21 = DC/ 75
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
AD/21 = DC/ 75 = AD + DC/ 21 + 75 = AC/ 96 = 72/ 96 = 3/4
=> AD/ 21 = 3/4 => AD = 15,75 (cm)
=> DC/ 75 = 3/4 => DC = 56, 25 (cm)
Mình không biết bạn có đánh sai số hay không mà số chênh nhau lớn quá, nếu bạn đánh sai thì chỉ cần thay số trong bài mình làm cho bạn là được nha :33
CHÚC BẠN HỌC TỐT !!!
Giải:
Hình:
A B D C K H H x 14-x 13
+ Kẻ BK ⊥DC tại K.
- ΔBDK vuông tại K, theo định lí Py-ta-go ta có:
BK2 = BD2- DK2 = 152 - (14-x)2 (1)
- ΔBKC vuông tại K, theo định lí Py-ta-go ta có:
BK2 = BC2- KC2 = 132 - x2 (2)
Từ (1) và (2) => 152 - (14 - x)2 = 132 - x2 (=BK 2)
⇔225 - 196 + 28x - x2 = 169 - x2
⇔ 28x - x2 + x2 = 169 -225 + 196
⇔ 28x = 140
⇔ x = 5
=> KC = 5 cm
=> DK = 14 -x = 14 -5 = 9 cm
Thay x = 5 vào (2) ta có:
BK2 = 132-52 = 144
⇔ BK = 12 cm
Ta có Hình thang ABCD vuông tại A có AB// CD
=> AD ⊥ DC ( tính chất hình thang vuông)
Xét tứ giác ABKD có:
\(\widehat{BAD}=\widehat{ADK}=\widehat{DKB}=90^0\) (gt)
=> ABKD là hình chữ nhật ( tứ giác có 3 góc vuông là hình chữ nhật)
=> \(\left\{{}\begin{matrix}AB=DK=9cm\\AD=BK=12cm\end{matrix}\right.\) (tính chất hình chữ nhật)
Xét ΔABD vuông tại A, đường cao AH, theo hệ thức lượng ta có:
AB2 = BH.BD
⇔ \(BH=\frac{AB^2}{BD}=\frac{9^2}{15}=\frac{81}{15}=\frac{27}{5}=5,4cm\)
SABCD = \(\frac{BK\left(AB+CD\right)}{2}=\frac{12\left(9+14\right)}{2}=138cm^2\)
18. a) Dễ cm : AE = AF
+ EF // BH \(\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow\frac{AE}{AC}=\frac{AC}{AH}\)
\(\Rightarrow AC^2=AE\cdot AH\Rightarrow AC=\sqrt{AE\cdot AH}\)
b) Qua C kẻ đg thẳng // với AD cắt AB tại I
+ AD là đg TB của ΔBCI
=> CI = 2AD \(\Rightarrow CI^2=\left(2AD\right)^2=4AD^2\)
+ CI // AD => CI ⊥ BC
+ ΔBCI vuông tại C, đg cao CF
\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{CI^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)
bài cuối tương tự câu a) bài trên
16. Qua B kẻ đg thẳng // với AC cắt CD tại I
Gọi BH là chiều cao của hình thang ABCD
+ BI // AC => BI ⊥ BD
+ Tứ giác ABIC là hbh => AB = CI
=> AB + CD = CD + CI = DI
+ ΔBDH vuông tại H
\(\Rightarrow DH=\sqrt{BD^2-BH^2}=20\) ( cm )
+ ΔBDI vuông tại B, đg cao BH
\(\Rightarrow BD^2=DH\cdot DI\)
\(\Rightarrow DI=\frac{29^2}{20}=42,05\) ( cm )
=> Độ dài đg TB của hình thang ABCD là :
\(\frac{1}{2}\left(AB+CD\right)=\frac{1}{2}DI=21,025\) ( cm )
A B C D H 12cm 16cm 9cm
a)Ta có △BDH vuông tại H\(\Rightarrow BD^2=BH^2+DH^2=12^2+16^2=144+256=400\Rightarrow BD=20\left(cm\right)\)Ta có △BCH vuông tại H\(\Rightarrow BC^2=BH^2+HC^2=12^2+9^2=144+81=225\Rightarrow BC=15\left(cm\right)\)
b) Ta có \(\dfrac{BD}{CD}=\dfrac{BD}{DH+CH}=\dfrac{20}{16+9}=\dfrac{20}{25}=\dfrac{4}{5}\left(1\right)\)
\(\dfrac{HD}{BD}=\dfrac{16}{20}=\dfrac{4}{5}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\dfrac{BD}{CD}=\dfrac{HD}{BD}\)
Xét △BHD và △CBD có
\(\widehat{BDC}\) chung
\(\dfrac{BD}{CD}=\dfrac{HD}{BD}\left(cmt\right)\)
Suy ra △BHD \(\sim\) △CBD(c-g-c)\(\Rightarrow\widehat{DBC}=\widehat{DHB}=90^0\)
Vậy △DBC vuông tại B