K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: M là trung điểm của AD

a: Xét ΔADB có

M là trung điểm của AD
E là trung điểm của DB

Do đó: ME là đường trung bình

=>ME//AB vàME=AB/2

Xét ΔCAB có

F là trung điểm của AC
G là trung điểm của BC

Do đó: FG là đường trung bình

=>FG//AB và FG=AB/2

Xét ΔBDC có

E là trung điểm của BD

G là trung điểm cua BC

DO đó: EG là đừog trung bình

=>EG//DC và EG=DC/2

Ta có: EG//DC

FG//AB

DC//AB

Do đó: F,G,E thẳng hàng(1)

Ta có: ME//AB

EG//AB

Do đó: M,E,G thẳng hàng(2)

Từ (1) và (2) suy ra M,E,F,G thẳng hàng

b: EF=EG-FG

nên \(EF=\dfrac{CD-AB}{2}\)

6 tháng 5 2019

đề bài: cho hình thanh ABCD (AB//CD). Gọi I là giao điểm của 2 đg chéo AC và BD. Vẽ qua I đường thẳng song song với AB và BC, cắt AD, BC lần lượt tại E,F. chứng minh:

....

bn tự kẻ hình nha :)

a) Xét tg ACD, có: EI // DC

\(\Rightarrow\frac{EI}{DC}=\frac{AI}{AC}\)(1)

Xét tg BCD, có: FI // DC
\(\Rightarrow\frac{FI}{DC}=\frac{IB}{BD}\)(2)

Xét tg ABI, có: AB // CD
\(\Rightarrow\frac{AI}{AC}=\frac{IB}{BD}\) (3)

Từ (1);(2);(3) \(\Rightarrow\frac{IE}{DC}=\frac{IF}{DC}\Rightarrow IE=IF\)

b) Xét tg ACD, EI // DC
=> EI/DC = AE/ AD (1)

Xét tg ADB, EI // AB

=> EI/AB = DE/AD (2)

Từ (1);(2) => \(\frac{EI}{DC}+\frac{EI}{AB}=\frac{AE}{AD}+\frac{DE}{AD}=1\)

\(\Rightarrow EI.\left(\frac{1}{DC}+\frac{1}{AB}\right)=1\Rightarrow\frac{1}{EI}=\frac{1}{DC}+\frac{1}{AB}\)

cmtt, t/có: \(\frac{1}{FI}=\frac{1}{DC}+\frac{1}{AB}\)

\(\Rightarrow\frac{1}{EI}=\frac{1}{FI}=\frac{1+1}{EI+FI}=\frac{2}{EF}=\frac{1}{AB}+\frac{1}{CD}\)

4 tháng 7 2019

#Hình bạn tự vẽ nhé!!!#

a)Ta có: AM=DM(M là trung điểm của AD); BN=CN(N là trung điểm của BC)

\(\Rightarrow\)MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN//CD\left(1\right)\)

Ta lại có:AM=DM(cmt); AE=CE(E là trung điểm của AC)

\(\Rightarrow\)ME là đường trung bình của \(\Delta ACD\)

\(\Rightarrow ME//CD\left(2\right)\)

Từ(1) và (2), suy ra:\(MN\equiv ME\)(theo tiên đề Ơ-clit)

                           \(\Rightarrow M,N,E\) thẳng hàng (3)    

Vì BN=CN(cmt); BF=DF(F là trung điểm của BD)

\(\Rightarrow\)NF là đường trung bình của \(\Delta BCD\)

\(\Rightarrow NF//CD\left(4\right)\)

Từ(1) và (4), suy ra:\(MN\equiv NF\)(theo tiên đề Ơ-clit)

                           \(\Rightarrow M,N,F\)  thẳng hàng(5)

Từ (2) và (5), suy ra:M,N,P,Q thẳng hàng

 
4 tháng 7 2019

A B C D M N F E

a) +)Xét hình thang ABCD có: M là trug điểm AD, N là trung điểm BC

=> MN là đường trung bình hình thang ABCD

=> MN//AB//DC (1)

+) xét tam giác ADC có: M là trung điểm AD; E là trung điểm EC

=> ME là đường trung bình tam giác ADC

=> ME//=1/2 DC (2)

+) Xét tam giác ADB có M là trung điểm AD, F là trung điểm DB 

=> MF là đường trung bình của tam giác ADB

=> MF//=1/2 AB (3)

Từ (1), (2), (3) suy ra MN, ME, MF cùng nằm trên một đường thẳng

=> M, N, E, F thẳng hàng 

b) 

Ta có: \(EF=ME-MF=\frac{1}{2}DC-\frac{1}{2}AB=\frac{DC-AB}{2}\)

27 tháng 1 2016

http://olm.vn/hoi-dap/question/403903.html

27 tháng 1 2016

http://olm.vn/hoi-dap/tag/Toan-lop-8.html