K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

A B C D E F I

Gọi I là giao điểm của BD và EF

EI//AB => \(\frac{DE}{AD}=\frac{ID}{DB}\)

IF//DC => \(\frac{BI}{BD}=\frac{BF}{BC}\)

=> \(\frac{DE}{AD}+\frac{BF}{BC}=\frac{ID}{DB}+\frac{BI}{BD}=\frac{BI+ID}{BD}=\frac{BD}{BD}=1\)

19 tháng 4 2020

D C E I F A B

Gọi I là giao điểm của DB và EF

Xét tam giác ADB 

Có : EI // AB

\(\Rightarrow\frac{DE}{AD}=\frac{ID}{DB}\)( 1 )

Xét tam giác DBC 

Có : IF // DC

\(\Rightarrow\frac{BI}{BD}=\frac{BF}{BC}\)( 2 )

Từ (1)(2) , suy ra

\(\frac{DE}{AD}+\frac{BF}{BC}=\frac{ID}{DB}+\frac{BI}{BD}=\frac{BI+ID}{BD}=\frac{BD}{BD}=1\)

Vậy : \(\frac{ED}{AD}+\frac{BF}{BC}=1\)

Em làm kiểu này không biết có đúng không cô Chi check lại giúp em ạ <3

7 tháng 2 2018

Bạn tự vẽ lấy hình nha

gọi AC và EF cắt nhau tại I

Ta có : EO // DC ( Vì EF // DC )

Theo định lý Ta let:

\(\frac{ED}{AD}=\frac{OC}{AC}\)

\(\frac{BF}{BC}=\frac{AO}{AC}\)

\(\Rightarrow\)\(\frac{ED}{AD}+\frac{BF}{BC}=\frac{OC}{AC}+\frac{AO}{AC}=1\)

Vậy \(\frac{ED}{AD}=\frac{BF}{AC}=1\left(ĐPCM\right)\)

23 tháng 3 2020

bn tham khảo ở đây

https://olm.vn/hoi-dap/tim-kiem?id=248114724967&id_subject=1&q=+++++++++++Cho+h%C3%ACnh+thang+ABCD+(+AB+//+CD),+m%E1%BB%99t+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+song+song+v%E1%BB%9Bi+%C4%91%C3%A1y+c%E1%BA%AFt+c%E1%BA%A1nh+b%C3%AAn+AD,+BC+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+%E1%BB%9F+E+v%C3%A0+F.Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+EDAD+=FCBC+++++++++++

23 tháng 3 2020

Câu hỏi của Mori Ran - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo

26 tháng 1 2020

A B D C E F

Theo đề ta có: \(AE+ED=AD\)

Và: \(\frac{AE}{DE}=\frac{3}{4}\Rightarrow\frac{AE}{AD}=\frac{3}{7}\)

Lại có: \(EF//AB//DC\)

Áp dụng định lí talet trong hình thang \(ABCD\) ta suy ra được:

\(\frac{BF}{BC}=\frac{AE}{AD}=\frac{3}{7}\)

Vậy .............