Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn tham khảo tai link sau nha: https://hoidap247.com/cau-hoi/225442
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a) Do \(AB//CD\Rightarrow AO//DN\)
Áp dụng định lí Ta-let cho tam giác \(IDN\) ta có \(\dfrac{OI}{IN}=\dfrac{AO}{DN}\)
\(\Rightarrow OI.ND=OA.IN\)
b) Do \(AB//CD\Rightarrow BO//CN\)
Áp dụng định lí Ta-let cho tam giác \(ICN\) ta có \(\dfrac{OI}{IN}=\dfrac{BO}{CN}\)
\(\Rightarrow\dfrac{AO}{DN}=\dfrac{BO}{CN}\left(=\dfrac{OI}{IN}\right)\) mà \(DN=CN\) (do \(N\) là trung điểm \(CD\))
\(\Rightarrow AO=BO\Rightarrow O\) là trung điểm \(AB\)