K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2018

E là trọng tâm hả hay trực tâm

25 tháng 12 2017

D E B A C O M K H I

a) Xét tứ giác ABCE có AB song song và bằng EC (gt) nên nó là hình bình hành.

b) Xét tứ giác ABED có AB song song và bằng DE (gt) nên nó là hình bình hành.

Lại có \(\widehat{ADE}=90^o\) nên ABED là hình chữ nhật.

Lại có AB = AD nên ABED là hình vuông.

c) Xét tam giác AME và DMB có :

ME = B

AE = DB (Hai đường chéo hình vuông)

\(\widehat{AEM}=\widehat{DBM}=45^o\) (ABED là hình vuông)

\(\Rightarrow\Delta AEM=\Delta DBM\left(c-g-c\right)\Rightarrow\widehat{MAE}=\widehat{MDB}\)    (1)

Xét hai tam giác vuông AHI và DOI có:

\(\widehat{AIH}=\widehat{DIO}\)  (Hai góc đối đỉnh)

\(\Rightarrow\widehat{HAI}=\widehat{IDO}\)  (Cùng phụ với hai góc bên trên)    (2)

Từ (1) và (2) ta có: \(\widehat{ODK}=\widehat{IDO}\) hay DO là tia phân giác của góc \(\widehat{IDK}\)

d)  Xét tam giác IDK có DO là tia phân giác đồng thời là đường cao nên nó là tam giác cân tại D.Vậy thì DO là đường trung tuyến hay OI = OK.

Do ABED là hình vuông nên O là trung điểm BD.

Xét tứ giác DIBK có O là trung điểm hai đường chéo nên DIBK là hình bình hành.

Lại có \(IK\perp DB\) nên DIBK là hình thoi.

18 tháng 9 2019

A B C D M H 1 2 4

a ) Ta có : \(AB=AD=\frac{CD}{2}\)    và M là trung điểm của CD (gt)

\(\Leftrightarrow AB=DM\) và AB // DM 

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của \(\Delta BDC\) mà MB = MD = MC.

Do đó \(\Delta BDC\) là tam giác vuông tại B hay \(DB\perp BC\)

c) ABMD là hình thoi (cmt)  \(\Leftrightarrow\widehat{D}_1=\widehat{D}_2\) 

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

\(HB=HD=\frac{1}{2}BD=\frac{1}{2}.4=2\left(cm\right)\)

Xét tam giác vuông AHB, ta có :

\(AH=\sqrt{AB^2-HB^2}\) ( định lí Pitago )

          \(=\sqrt{2,5^2-2^2}=1,5\left(cm\right)\)

\(\Rightarrow AM=3\left(cm\right)\)

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

\(\Rightarrow BC=AM=3\left(cm\right)\)

Ta có :

\(S_{BDC}=\frac{1}{2}BD.BC=\frac{1}{2}.4.3=6\left(cm^2\right)\)

M là trung điểm của DC nên

\(S_{BMD}=S_{BMC}=\frac{S_{BCD}}{2}=3\left(cm^2\right)\) 

(chung đường cao kẻ từ B và MD = MC)

Mặt khác \(\Delta ABD=\Delta MDB\) ( ABCD là hình thoi )

\(\Leftrightarrow S_{ABD}=S_{BMD}=3\left(cm^2\right)\)

Vậy \(S_{ABCD}=S_{ABD}+S_{BMD}+S_{BMC}=9\left(cm^2\right)\)

Chúc bạn học tốt !!!

5 tháng 2 2021

Buồi

27 tháng 12 2019

a) Ta có: AB = AD = CD/2 và M là trung điểm của CD (gt)

⇔ AB = DM và AB // DM

Do đó tứ giác ABMD là hình bình hành có AB = AD. Vậy ABMD là hình thoi.

b) M là trung điểm của CD nên BM là trung tuyến của ΔBDC mà MB = MD = MC. Do đó ΔBDC là tam giác vuông tại B hay DB ⊥ BC

c) ABMD là hình thoi (cmt) ⇔ ∠D1 = ∠D2

Do đó hai tam giác vuông AHD và CBD đồng dạng (g.g)

d) Ta có :

Xét tam giác vuông AHB, ta có :

Dễ thấy tứ giác ABCM là hình bình hành (AB // CM và AB = CM)

⇒ BC = AM = 3 (cm)

Ta có:

M là trung điểm của DC nên

SBMD = SBMC = SBCD/2 = 3 (cm2) (chung đường cao kẻ từ B và MD = MC)

Mặt khác ΔABD = ΔMDB (ABCD là hình thoi)

⇔ SABD = SBMD = 3 (cm2)

Vậy SABCD = SABD + SBMD + SBMC = 9 (cm2)

5 tháng 2 2021

Mày N Mày Chết M Mày Đi Kêu Cặk

30 tháng 5 2019

TL:

a)AB//DM
AB=DM(cùng bằng 1/2 CD)
=>ABMD là hbh
=>AD=BM 
=>AB=BM=MD=DA=>ABMD là hình thoi
b)tam giác CBM cân tại M => góc C= góc CBM
tam giác MBD cân tại M => góc B= góc BDM
=>góc DBC = góc C + góc BDC = 90*
c)ABMD là hình thoi => AM vuông góc với BD => góc H = 90*
tam giác ADH và tam giác CDB có :
góc H = góc B =90*
góc ADB = BDM
=> tam giác ADH ~ tam giác CBD(g-g)
d)AB=2.5=>CD=5
Áp dụng định lí Pitago vào tam giác vuông BCD 
ta tính đc BC = 3cm
Diên tích tam giác BDC = 3*4/2=6cm2
Diện tích tam giác ABD = 1.5 * 4/2 = 3cm2
=> Diện tích hình thang ABCD = 9cm2

~ t.i.c.k nha ~

30 tháng 5 2019

Bạn tham khảo bài này nhé : https://h.vn/hoi-dap/question/619973.html

~Study well~

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

25 tháng 12 2017

Câu hỏi của Nguyễn Thiên Anh - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo tại đây nhé.