\(\widehat{A}\) và
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì ABCD là hình thang 

=> BAD + ADC = 180° ( trong cùng phía )

Vì AI là phân giác BAD

=> BAI = DAI = \(\frac{1}{2}BAD\) 

Vì BI là phân giác ADC 

=> ADI = CDI = \(\frac{1}{2}ADC\)

=> \(\frac{1}{2}ADC\)\(\frac{1}{2}BAD\)= 90°

Xét ∆AID có : 

IAD + IDA + AID = 180° 

=> AID = 180° - 90° = 90° 

=> AI \(\perp\)DI 

Chứng minh tương tự ta có : 

BJ \(\perp\)IC 

18 tháng 7 2017

đề bài sai

18 tháng 7 2017

Cho hình thang ABCD, AB//CD với AB>CD. CMR: nếu AD=AB+DC thì 2 tia phân giác của góc A và góc D cắt nhau tại trung điểm của BC.

Giải:

Gọi M,N lần lượt là trung điểm của AD và BC =>MN là đường trung bình của hình thang ABCD =>MN=(AB+CD)/2=AD/2=MA=MD; MN//AB, MN//DC

=>tam giác MND và tam giác MNA cân tại M => góc MND = góc MDN mà góc MND = góc CDN (so le trong)

=> ND là tia phân giác góc D

CM tương tự ta có NA là tia phân giác góc A

mà N trung điểm BC => ĐPCM

7 tháng 11 2017

E A D C B G H I K F O

b) Do \(\widehat{E}=\widehat{F}\) nên \(\widehat{AEG}=\widehat{GEB}=\widehat{BAI}=\widehat{IAC}\).
Từ đó ta chứng minh được \(\Delta EGA\) ~ \(\Delta AGO\) (g.g) .
Suy ra \(\widehat{EAB}=\widehat{AOG}=90^o\), vì vậy \(GH\perp IK\).
Xét tam giác EIH có EO là đường phân giác và có \(EO\perp IK\left(\widehat{O}=90^o\right)\) nên tam giác EIH cân tại E.
Suy ra OI = OK.
Chứng minh tương tự ta có \(GO=HO\).
Có \(GH\perp IK\) tại O và O là trung điểm của GH và IK nên tứ giác GKHI là hình thoi.

7 tháng 11 2017

Sao lại có góc BAI và góc IAC nhìn hình vẽ đâu có thành góc gì đâu bạn