Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
b: OE là phân giác của góc COD trong ΔCOD
nên EC/ED=OC/OD=OA/OB
A B O C D
Vì ABCD là hình thang \(\Rightarrow AB//CD\)\(\Rightarrow\widehat{OAB}=\widehat{OCD}\); \(\widehat{OBA}=\widehat{ODC}\)( so le trong )
Xét \(\Delta AOB\)và \(\Delta COD\)ta có:
+) \(\widehat{AOB}=\widehat{COD}\)( đối đỉnh )
+) \(\widehat{OAB}=\widehat{OCD}\)( chứng minh trên )
+) \(\widehat{OBA}=\widehat{OCD}\)( chứng minh trên )
\(\Rightarrow\Delta AOB~\Delta COD\)( \(g.g.g\) ) ( đpcm )
Chú ý :Δ là tam giác
a) Xét ΔAOD và ΔBAD có:
{Dˆ:chungAOˆD=DAˆB=90⇒ΔAOD≀ΔBAD(g.g)
b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)
Và AOˆD=AOˆB=90 (2 đường chéo vuông góc tại O)
Do đó ΔAOD≀ΔBOA(g.g)
⇒ADAB=ODAO (1)
Lại có: {DAˆO:chungAOˆD=ADˆC=90⇒ΔADC≀ΔAOD(g.g)
⇒CDOD=ADAO⇔CDAD=ODAO (2)
Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD
c) Ta có: AB song song với DC (ABCD là hình thang)
⇒ABˆO=ODˆC(slt)
Và AOˆB=DOˆC(đ2)
Do đó ΔOCD≀ΔOAB(g.g)
⇒k=OCOA=CDAB=94
⇒SΔOCDSΔOAB=k2=942=8116
Vậy........................
Chúc bạn học tốt nhé !
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC\(\sim\)ΔHBC
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HD=10-3,6=6,4(cm)
Câu C: Vẽ thêm đường cao AE (E thuộc DC). Vì ABCD là hình thang cân nên HC = DE = 9cm (tam giác AED = tam giác BHC bạn tự chứng minh nhé) suy ra AB = HE = 7cm. Dựa vào tam giác BDC đồng dạng với tam giác HBC tính đc HB = 12cm. Vậy diện tích hình thang ABCD là 192 cm2 nhé banj!
Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔAOB đồng dạng với ΔCOD
=>\(k=\dfrac{AB}{CD}=\dfrac{10}{25}=\dfrac{2}{5}\)