Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặ \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)
Theo đề, ta có: 5a=3b=15c
=>\(\frac{5a}{15}=\frac{3b}{15}=\frac{15c}{15}\)
=>\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}=\frac{a+b+c}{3+5+1}=\frac{180}{9}=20\)
=>\(\begin{cases}a=20\cdot3=60\\ b=20\cdot5=100\\ c=20\cdot1=20\end{cases}\)
=>\(\hat{A}=60^0;\hat{B}=100^0;\hat{C}=20^0\)
AD là phân giác của góc BAC
=>\(\hat{BAD}=\hat{CAD}=\frac12\cdot\hat{BAC}=30^0\)
Xét ΔADC có \(\hat{ADB}\) là góc ngoài tại đỉnh D
nên \(\hat{ADB}=\hat{DAC}+\hat{DCA}=30^0+20^0=50^0\)

Bài 2:
Đặt số đo góc B là x, số đo góc C là y
Theo đề, ta có:
\(\left\{{}\begin{matrix}x+y=90\\x-y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=114\\x+y=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=57^0\\y=33^0\end{matrix}\right.\)

Ta có :
A+B+C=180(tính chất của một tam giác)
⇒A=180-B-C
⇒A=180-20
⇒A=160
vì tia phân giác của góc A cắt BC tại D nên A1=A2=\(\dfrac{160}{2}\)=80
\(\Leftrightarrow\)D1=80
Vì góc D1 và góc D2 là 2 góc kề bù nên D1+D2=180
mà góc D1=80
\(\Rightarrow\)D2=180-80
\(\Rightarrow\)D2=100
Vay : D1=80, D2=100
mk ko viết đc kí hiệu góc và độ mong mọi người thông cảm

a) Xét tam giác vuông ABC, áp dụng định lí Pi-ta-go ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
b) Ta có do tam giác ABC vuông tại A nên \(\widehat{ABC}+\widehat{ACB}=90^o\)
Lại có \(\widehat{IBC}=\frac{\widehat{ABC}}{2};\widehat{ICB}=\frac{\widehat{ACB}}{2}\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{90^o}{2}=45^o\)
Xét tam giác BIC có \(\widehat{IBC}+\widehat{ICB}=45^o\) nên \(\widehat{BIC}=180^o-45^o=135^o\)
c) Kẻ DH vuông góc BC tại H.
Ta có ngay \(\Delta BAD=\Delta BHD\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AD=HD\)
Lại có : theo quan hệ giữa đường vuông góc với đường xiên thì HD < DC
Suy ra AD < DC
d) Gọi K là chân đường vuông góc hạ từ I xuống BC.
Ta có I là giao điểm của ba đường phân giác nên IE = IF = IK
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=24\left(cm^2\right)\)
Lại có \(S_{ABC}=S_{ABI}+S_{BCI}+S_{CIA}=\frac{1}{2}AB.EI+\frac{1}{2}AC.IF+\frac{1}{2}BC.IK\)
\(=\frac{1}{2}\left(AB+BC+CA\right).EI=12.EI\)
Vậy nên \(12.EI=24\Rightarrow EI=2\left(cm\right)\)
Ta thấy AEIF là hình vuông nên AE = AF = 2cm.

Bài 2:
\(\widehat{ADB}=180^0-80^0=100^0\)
Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)
\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)
\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)
\(\Leftrightarrow\widehat{C}=40^0\)
hay \(\widehat{B}=60^0\)
=>\(\widehat{BAC}=80^0\)