Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy độ dài cạnh AN bằng 1/4 cạnh AC nên diện tích tam giác AMN bằng 1/4 diện tích tam giác ABC.
Diện tích tam giác AMN là:
126 x 1/4 = 31,5 ( cm2)
Đáp số: 31,5 cm2
Diện tích tam giác AMN là:
160:2:4=20 (cm2)
Đáp số:20 cm2
A B C N M
nối C với M.
tam giác ACM và tam giác ACB cho chung đường cao hạ tự điểm C xuống cạnh AB. đáy \(AM=\frac{1}{2}\)đáy AB (là điểm chính giữa của cạnh AB)
\(\Rightarrow S_{\left(ACM\right)}=\frac{1}{2}.S_{\left(ABC\right)}=\frac{1}{2}.60=80\left(cm^2\right)\)
xét tam giác AMN và tam giác ACM có chung chiều cao hạ từ M xuống cạnh AC; đáy \(AN=\frac{1}{4}\)đáy AC
\(\Rightarrow S_{\left(AMN\right)}=\frac{1}{4}.S_{\left(ACM\right)}=\frac{1}{4}.80=20\left(cm^2\right)\)
Vì gấp rưỡi là gấp 3/2 còn 1 nửa là 1/2. Ta lấy 3/2 : 1/2 = 3.
Diện tích tam giác ABC là: 36 x 3 = 108
Diện tích tứ giác BMNC là: 108 - 36 = 72 (cm2)
Đ/s: 72 cm2
ta có MC cắt BN tại K nên K là trọng tâm tam giác ABC
=> S(BAK)=S(AKC) mà S(KAB)=42dm2
=> S(AKC)=42dm^2
AB=BM
=>B là trung điểm của AM
=>AB=1/2AM
=>\(S_{AMC}=2\cdot S_{ABC}=2\cdot24=48\left(cm^2\right)\)
\(AN=3\cdot NC\)
=>\(NC=\dfrac{1}{3}\cdot AN\)
Ta có: AN+NC=AC
=>\(AC=\dfrac{1}{3}AN+AN=\dfrac{4}{3}AN\)
=>\(AN=\dfrac{3}{4}AC\)
=>\(S_{AMN}=\dfrac{3}{4}\cdot S_{AMC}=\dfrac{3}{4}\cdot48=36\left(cm^2\right)\)