Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài giải:
Các tam giác vuông AEH, BFC, CGF, DHG có:
AE = BF = CG = DH (gt)
Suy ra AH = BE = CF = DG
Nên ∆AEH = ∆BFE = ∆CGF = ∆DHG (c.g.c)
Do đó HE = EF = FG = GH (1)
và ˆEHAEHA^ = ˆFEBFEB^
Ta có ˆHEFHEF^ = 1800 - (ˆHEAHEA^ + ˆFEBFEB^) = 1800 - (ˆHEAHEA^ + ˆEHAEHA^)
= 1800 - 900 = 900 (2)
Từ (1) và (2) ta được EFGH là hình vuông
Các tam giác vuông AEH, BFC, CGF, DHG có:
AE = BF = CG = DH (gt)
Suy ra AH = BE = CF = DG
Nên ∆AEH = ∆BFE = ∆CGF = ∆DHG (c.g.c)
Do đó HE = EF = FG = GH (1)
và ˆEHAEHA^ = ˆFEBFEB^
Ta có ˆHEFHEF^ = 1800 - (ˆHEAHEA^ + ˆFEBFEB^) = 1800 - (ˆHEAHEA^ + ˆEHAEHA^)
= 1800 - 900 = 900 (2)
Từ (1) và (2) ta được EFGH là hình vuông.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
![](https://rs.olm.vn/images/avt/0.png?1311)
* Do ABCD là hình vuông nên AB = BC = CD = DA.
Theo giả thiết ta có: AE = BF = CG = DH nên ta có:
AB – AE = BC – BF = CD – CG = DA – DH
⇔ BE = CF= DG = HA
* Xét các tam giác vuông AEH, BFE, CGF, DHG có:
AE= BF = CG = DH (giả thiết)
HA= BE = CF = DG (chứng minh trên)
⇒ ΔAEH = ΔBFE = ΔCGF = ΔDHG ( c.g.c)
Suy ra: HE = EF = FG = GH (các cạnh tương ứng)
* Tứ giác EFGH là hình thoi có 1 góc bằng 90o nên EFGH là hình vuông.
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
a ) \(25-20x+4x^2=0\)
\(\Leftrightarrow\left(5-2x\right)^2=0\)
\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)
\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)
Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)
Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài
Vậy..
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét\(\Delta\)MBD và \(\Delta\)MNE có:
BM=MN
DM=ME
BMD=NME(2 góc đối đỉnh)
\(\Delta BMD=\Delta NME\) (c-g-c)
\(\Rightarrow\)MDB=MEN(2 góc tương ứng)
MÀ 2 GÓC NÀY Ở VỊ TRÍ SO LE TRONG\(\Rightarrow\)DB//NE
Mà DB\(\perp\)AB\(\Rightarrow\)NE\(\perp\)AB
chúc bạn làm tốt
có ABCD là Hvuông (gt)
=>\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=90^0\) ( t/c Hvuông)
AB = BC = DC =AD (t/c Hvuông) mà AE = BF = CG = HD (gt)
=> EB = CF = DG = AH
xét tam giác AEH và tam giác BFE
có AE = BF(gt)
\(\widehat{A}=\widehat{B}=90^0\)(cmt)
EB = AH(cmt)
=> tam giác AEH = tg BFE (c-g-c)
=> HE = FE (2 cạnh tương ứng) (1)
cm tương tự ta được
tam giác AHE = tg DGH( c-g-c)=> HE = HG(2 cạnh tương ứng) (2)
tg DHG = tg CGF(c-g-c)=> HG = GF (2 cạnh tương ứng) (3)
từ (1) (2) và (3) => HE = EF = GF = HG
=> EFGH là Hthoi ( vì là tứ giác có 4 cạnh = nhau)
tg AHE = tg BEF (cmt) => \(\widehat{BEF}=\widehat{AHE}\)(2 góc tương ứng)
mà \(\widehat{AHE}+\widehat{AEH}=90^0\)( vì tam giác AHE vuông tại A )
=> \(\widehat{BEF}+\widehat{AEH}=90^0\)
có \(\widehat{AEH}+\widehat{HEF}+\widehat{BEF}=180^0\)=> \(\widehat{HEF}=90^0\)
Hthoi EFGH có ^HEF =90 độ
=> EFGH là Hvuông( vì là Hthoi có 1 góc vuông)