K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

Hình khá khó nhìn nhé! Vào thống kê mình xem

Link: https://imgur.com/a/h2NM0ep

Đặt x là giao của AD và BE, Y là giao CF và AD; Z là giao BE và DF

Theo định lí Pascal thì M,X,Q; P,S,Y và R,Z,N là các bộ 3 điểm thẳng hàng

Xét tam giác XED có DF,CE, XQ đồng quy

Theo định lý Ceva có:

\(\frac{\sin\widehat{QXE}}{\sin\widehat{QXD}}\cdot\frac{\sin\widehat{ADF}}{\sin\widehat{EDF}}\cdot\frac{\sin\widehat{CED}}{\sin\widehat{CEB}}=1\)

\(\Rightarrow\frac{\sin\widehat{QXE}}{\sin\widehat{QXD}}=\frac{\sin\widehat{ADF}}{\sin\widehat{EDF}}\cdot\frac{\sin\widehat{CED}}{\sin\widehat{CEB}}=\frac{EF}{AF}\cdot\frac{CB}{CD}\)

Lập các tỉ số tương tự và nhân chúng lại với nhau, áp dụng định lý Ceva lần nữa cho tam giác XYZ ta có: XQ, YS, ZN đồng quy

hay MQ, PS, NR đồng quy (đpcm)

9 tháng 3 2020

Goi AD giao BE tai X

Theo dinh ly Pascal ta se co MQ,PS,NR dong quy tai X

dpcm

27 tháng 12 2021

Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC

Kẻ đường cao AH const

Đặt \(AB=AC=BC=a\)

\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\)

\(=\frac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\)

\(=\frac{1}{2}a\left(DM+ME+MF\right)\)

\(=\frac{1}{2}a.AH\)

\(=DM+ME+MF=AH\left(đpcm\right)\)

27 tháng 12 2021

Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC

Kẻ đường cao \(AH\) const

Đặt \(AB=AC=BC=a\)

\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\\ =\dfrac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\\ =\dfrac{1}{2}a\left(DM+ME+MF\right)\\ =\dfrac{1}{2}a.AH\\ \Rightarrow DM+ME+MF=AH\\ \RightarrowĐpcm\)

16 tháng 5 2018

a)

Giải bài tập Toán 9 | Giải Toán lớp 9

b) Cách vẽ lục giác đều có tất cả các đỉnh nằm trên đường tròn (O)

Vẽ các dây cung AB = BC = CD = DE = EF = FA = R = 2 cm

(Ta đã nêu được cách chia đường tròn thành sáu cung bằng nhau tại bài tập 10 SGK trang 71)

c) Vì các dây cung AB = BC = CD = DE = EF = FA bằng nhau nên khoảng cách từ O đến các dây là bằng nhau ( định lý liên hệ giữa dây cung và khoảng cách từ tâm đến dây)